Nanjing University of Aeronautics and Astronautics

Chine

Retour au propriétaire

1-100 de 140 pour Nanjing University of Aeronautics and Astronautics Trier par
Recheche Texte
Brevet
États-Unis - USPTO
Affiner par Reset Report
Date
Nouveautés (dernières 4 semaines) 4
2024 avril (MACJ) 3
2024 mars 4
2024 février 2
2024 janvier 3
Voir plus
Classe IPC
G06T 7/00 - Analyse d'image 10
G06K 9/62 - Méthodes ou dispositions pour la reconnaissance utilisant des moyens électroniques 6
G06T 7/73 - Détermination de la position ou de l'orientation des objets ou des caméras utilisant des procédés basés sur les caractéristiques 6
G06N 3/08 - Méthodes d'apprentissage 5
G06V 10/774 - Dispositions pour la reconnaissance ou la compréhension d’images ou de vidéos utilisant la reconnaissance de formes ou l’apprentissage automatique utilisant l’intégration et la réduction de données, p.ex. analyse en composantes principales [PCA] ou analyse en composantes indépendantes [ ICA] ou cartes auto-organisatrices [SOM]; Séparation aveugle de source méthodes de Bootstrap, p.ex. "bagging” ou “boosting” 5
Voir plus
Statut
En Instance 54
Enregistré / En vigueur 86
Résultats pour  brevets
  1     2        Prochaine page

1.

NUMERICAL SIMULATION OPTIMIZATION METHOD OF IMPACT DAMAGE BASED ON LASER MAPPED SOLID MESH

      
Numéro d'application 18275730
Statut En instance
Date de dépôt 2022-12-29
Date de la première publication 2024-04-18
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Jia, Xu
  • Song, Yingdong
  • Jiang, Rong
  • Wang, Dawei

Abrégé

A numerical simulation optimization method of impact damage based on a laser mapped solid mesh is provided, including: measuring an impact damage size, a damage profile, a surface residual strain and a surface residual stress of a solid mesh element around the damage after firing a bullet by a light gas gun to impact a mesh area of a sample and obtaining the impact damage; establishing a parameterized impact finite element model to obtain a numerically simulated impact damage size, a numerically simulated impact damage profile, a numerically simulated surface residual strain and the surface residual stress of the surface solid mesh element; and calculating relative errors between the experimental measurements and the numerically simulated impact damage size, damage profile, surface residual strain and residual stress; and determining whether the relative errors are all less than expected values until a numerical simulation result meeting the accuracy requirements are obtained.

Classes IPC  ?

  • G06F 30/23 - Optimisation, vérification ou simulation de l’objet conçu utilisant les méthodes des éléments finis [MEF] ou les méthodes à différences finies [MDF]
  • G06T 17/20 - Description filaire, p.ex. polygonalisation ou tessellation
  • G06F 111/10 - Modélisation numérique
  • G06F 119/02 - Analyse de fiabilité ou optimisation de fiabilité; Analyse de défaillance, p.ex. performance dans le pire scénario, analyse du mode de défaillance et de ses effets [FMEA]

2.

Air-ground joint trajectory planning and offloading scheduling method and system for distributed multiple objectives

      
Numéro d'application 18522311
Numéro de brevet 11961409
Statut Délivré - en vigueur
Date de dépôt 2023-11-29
Date de la première publication 2024-04-16
Date d'octroi 2024-04-16
Propriétaire Nanjing University of Aeronautics and Astronautics (Chine)
Inventeur(s)
  • Huang, Yang
  • Dong, Miaomiao
  • Zhu, Xinyu
  • Wang, Wei
  • Liu, Wenqiang

Abrégé

An air-ground joint trajectory planning and offloading scheduling method and system for distributed multiple objectives is provided. At the beginning of each timeslot, an unmanned aerial vehicle (UAV) selects a flight direction based on a total energy consumption of all devices and a total amount of unprocessed data of all the devices in the current system, and flies a fixed distance towards a certain direction. Before the UAV reaches a new location, each terrestrial user independently selects a task data offloading scheduling strategy based on the total energy consumption of all the devices and the total amount of the unprocessed data of all the devices in the current system. In order to improve an expected long-term average energy efficiency and data processing capability, the present disclosure also provides average feedbacks for an energy consumption and unprocessed data.

Classes IPC  ?

  • G08G 5/00 - Systèmes de commande du trafic aérien

3.

Multi-path internal microporous efficient refrigeration method and device for frozen sand mold

      
Numéro d'application 18523890
Numéro de brevet 11945026
Statut Délivré - en vigueur
Date de dépôt 2023-11-30
Date de la première publication 2024-04-02
Date d'octroi 2024-04-02
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Shan, Zhongde
  • Yang, Haoqin
  • Shi, Jianpei

Abrégé

A multi-path internal microporous efficient refrigeration method and device for a frozen sand mold is provided. The device includes a frozen sand molding chamber, an electric lifting platform, a teflon porous lining, a removable porous aluminum plate, a frozen sand mold refrigeration device box, a sealing cover plate, an ultrasonic piezoelectric sheet, a U-shaped condenser tube, an ultrasonic generator, and a low-temperature refrigeration system. The teflon lining and the removable porous aluminum plate are provided with through hole structures of the same size and shape for rapid cooling from the surface to core of molding sand. The lifting platform is opened and the bumpy-ridge teflon lining rises to a highest point to facilitate demolding. The high- and low-frequency dual mode of the ultrasonic piezoelectric sheet can be used for vibrating and compacting the frozen sand mold, and can also assist in cutting forming.

Classes IPC  ?

  • B22C 9/12 - Traitement des moules ou noyaux, p.ex. séchage, étuvage
  • B22C 9/02 - Moules en sable ou moules analogues pour pièces coulées

4.

PIEZOELECTRIC COMPOSITE MATERIAL, ACTUATOR, AND PREPARATION METHOD OF ACTUATOR

      
Numéro d'application 18140251
Statut En instance
Date de dépôt 2023-04-27
Date de la première publication 2024-03-28
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Ji, Hongli
  • Qiu, Jinhao
  • Zhang, Chao
  • Tao, Congchong
  • Du, Yuemin
  • Qu, Jiao

Abrégé

Provided are a piezoelectric composite material, an actuator, and a preparation method of the actuator, relating to the technical field of piezoelectric composite material actuators. The piezoelectric composite material includes an upper interdigital electrode layer, a piezoelectric fiber composite layer and a lower interdigital electrode layer which are arranged in sequence from top to bottom. The upper interdigital electrode layer, the piezoelectric fiber composite layer and the lower interdigital electrode layer each are of a parallelogram structure. A piezoelectric ceramic fiber array is embedded on the piezoelectric fiber composite layer; and the piezoelectric ceramic fiber array is of a parallelogram structure. By arranging the piezoelectric ceramic fiber array of the parallelogram structure, the effective area of an actuator can be increased, and then the actuation performance of the actuator can be improved.

Classes IPC  ?

  • H10N 30/00 - Dispositifs piézo-électriques ou électrostrictifs
  • H10N 30/06 - Formation d’électrodes ou d’interconnexions, p.ex. de connections électriques ou de bornes
  • H10N 30/092 - Formation de matériaux composites
  • H10N 30/20 - Dispositifs piézo-électriques ou électrostrictifs à entrée électrique et sortie mécanique, p.ex. fonctionnant comme actionneurs ou comme vibrateurs
  • H10N 30/853 - Compositions céramiques
  • H10N 30/87 - Dispositifs piézo-électriques ou électrostrictifs - Détails de structure Électrodes ou interconnexions, p.ex. connexions électriques ou bornes

5.

Efficient parallelization and deployment method of multi-objective service function chain based on CPU + DPU platform

      
Numéro d'application 18485205
Numéro de brevet 11936758
Statut Délivré - en vigueur
Date de dépôt 2023-10-11
Date de la première publication 2024-03-19
Date d'octroi 2024-03-19
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Wang, Ran
  • Wu, Qiang
  • Hao, Jie
  • Yu, Xue

Abrégé

An efficient parallelization and deployment method of a multi-objective service function chain based on a CPU+DPU platform solves the problem of multi-objective deployment by constructing a heterogeneous computing architecture composed of an orchestrator and a server based on a CPU+DPU structure; the orchestrator is responsible for receiving an SFC request from a network operator; an SFC deployment algorithm based on deep reinforcement learning is operated, including a parallel strategy, a VNF topological order strategy and a DPU processing strategy to obtain an optimal deployment scheme of each request; then a resource management module is invoked to manage resources; and finally, a driver module is invoked to transmit the deployment scheme to a server for placement, and the server completes the deployment of SFC by using the CPU or the DPU respectively according to the deployment scheme.

Classes IPC  ?

  • H04L 67/61 - Ordonnancement ou organisation du service des demandes d'application, p.ex. demandes de transmission de données d'application en utilisant l'analyse et l'optimisation des ressources réseau requises en tenant compte de la qualité de service [QoS] ou des exigences de priorité
  • G06F 9/48 - Lancement de programmes; Commutation de programmes, p.ex. par interruption
  • G06F 9/50 - Allocation de ressources, p.ex. de l'unité centrale de traitement [UCT]
  • H04L 41/14 - Analyse ou conception de réseau
  • H04L 41/16 - Dispositions pour la maintenance, l’administration ou la gestion des réseaux de commutation de données, p.ex. des réseaux de commutation de paquets en utilisant l'apprentissage automatique ou l'intelligence artificielle

6.

Wire feeding mechanism suitable for fused deposition Additive Manufacturing (AM) of flexible wire

      
Numéro d'application 18243651
Numéro de brevet 11926098
Statut Délivré - en vigueur
Date de dépôt 2023-09-07
Date de la première publication 2024-03-12
Date d'octroi 2024-03-12
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Shan, Zhongde
  • Fan, Congze
  • Song, Wenzhe
  • Chen, Yiwei
  • Zheng, Jinghua
  • Luo, Linlin

Abrégé

A wire feeding mechanism suitable for fused deposition Additive Manufacturing (AM) of a flexible wire is provided, which includes a support housing. A melting nozzle is arranged at the lower end of the support housing, a hook is connected to the inner wall of the top end of the support housing, a connecting rod is connected to the inner wall of one side of the support housing, a wire drawing mechanism is connected to one end of the connecting rod, the wire drawing mechanism is located at the lower end of the hook, a limiting mechanism and a wire guide mechanism are connected to the inner wall of one side of the support housing, the limiting mechanism is located at the lower end of the wire drawing mechanism, the wire guide mechanism is located at the lower end of the limiting mechanism.

Classes IPC  ?

  • B29C 64/321 - Alimentation
  • B29C 64/118 - Procédés de fabrication additive n’utilisant que des matériaux liquides ou visqueux, p.ex. dépôt d’un cordon continu de matériau visqueux utilisant un matériau filamentaire mis en fusion, p.ex. modélisation par dépôt de fil en fusion [FDM]
  • B33Y 30/00 - Appareils pour la fabrication additive; Leurs parties constitutives ou accessoires à cet effet

7.

ELASTIC COOPERATIVE INFERENCE ARCHITECTURE AND METHOD FOR UAV CLUSTER

      
Numéro d'application 17979008
Statut En instance
Date de dépôt 2022-11-02
Date de la première publication 2024-03-07
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Dong, Chao
  • Qu, Yuben
  • Sun, Hao
  • Wu, Feiyu
  • Ren, Weiqing
  • Wu, Qihui
  • Zhang, Lei

Abrégé

An elastic cooperative inference architecture and method for UAV cluster can dynamically update the scheduling policy according to the status of each node, and can deal with the failure of some nodes. In addition, the elastic cooperative inference architecture and method can process larger scale complex models on the embedded devices with limited performance carried by UAVs by means of cooperative inference, so as to improve the accuracy of intelligent applications. At the same time, the elastic cooperative inference architecture and method can adaptively update the allocation strategy when some nodes are unavailable or recovered, and improve the survivability of UAV cluster through elastic coordination.

Classes IPC  ?

  • H04W 16/26 - Amplificateurs de cellules, p.ex. pour tunnels ou effet d'écran créé par des immeubles

8.

Additive manufacturing device for aerospace truss

      
Numéro d'application 18242529
Numéro de brevet 11911961
Statut Délivré - en vigueur
Date de dépôt 2023-09-06
Date de la première publication 2024-02-27
Date d'octroi 2024-02-27
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Shan, Zhongde
  • Fan, Congze
  • Zheng, Jinghua
  • Song, Wenzhe
  • Chen, Yiwei
  • Liu, Kai

Abrégé

An additive manufacturing device for an aerospace truss includes a raw material input unit, a longitudinal beam forming unit, a longitudinal beam traction unit, a cross beam forming unit and a truss support unit. The raw material input unit stores pre-impregnated wires and pre-impregnated tapes, and a motor drives rollers to convey the pre-impregnated wires and the pre-impregnated tapes forward; the longitudinal beam forming unit is composed of three sets of forming molds, and the pre-impregnated tapes form V-shaped longitudinal beams through heating molds; a stepper motor used in the longitudinal beam traction unit drives three sets of roller traction devices through steering gears to pull formed longitudinal beams; the cross beam forming unit is composed of a motion module and a printing module, and a truss cross beam is printed through a 3D printing method of molten deposition.

Classes IPC  ?

  • B29C 64/218 - Rouleaux
  • B29C 64/236 - Moyens d’entraînement pour un mouvement dans une direction dans le plan d’une couche
  • B29C 64/295 - Fabrication additive, c. à d. fabrication d’objets en trois dimensions [3D] par dépôt additif, agglomération additive ou stratification additive, p.ex. par impression en 3D, stéréolithographie ou frittage laser sélectif - Détails ou accessoires à cet effet Éléments de chauffage
  • B29L 31/30 - Véhicules, p.ex. bateaux ou avions, ou éléments de leur carrosserie
  • B33Y 30/00 - Appareils pour la fabrication additive; Leurs parties constitutives ou accessoires à cet effet
  • B33Y 80/00 - Produits obtenus par fabrication additive

9.

HELICOPTER ACTIVE NOISE SUPPRESSION DEVICE INTEGRATING SOUND ARRAY AND ON-PROPELLER CONTROL

      
Numéro d'application 18257610
Statut En instance
Date de dépôt 2022-01-25
Date de la première publication 2024-02-01
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Shi, Yongjie
  • Ma, Taihang
  • Hu, Zhiyuan
  • Xu, Guohua
  • Liu, Yang

Abrégé

A helicopter active noise suppression device integrating a sound array and on-propeller control, which relates to the technical field of helicopter noise reduction, includes an annular loudspeaker array, a plurality of force exciters, an error microphone, an Active Noise Cancellation (ANC) controller, a cockpit sensor, and an airborne computer. The annular loudspeaker array is arranged at a rotor hub and unsteady force exciters are arranged at each blade trailing edge to construct a sound field in an reversed phase to the sound wave of an original sound field with an ANC principle, thereby counteracting the noise and realizing the noise reduction of all-domain and all-type helicopter noise.

Classes IPC  ?

  • B64C 27/00 - Giravions; Rotors propres aux giravions
  • G10K 11/178 - Procédés ou dispositifs de protection contre le bruit ou les autres ondes acoustiques ou pour amortir ceux-ci, en général utilisant des effets d'interférence; Masquage du son par régénération électro-acoustique en opposition de phase des ondes acoustiques originales

10.

LOW-TEMPERATURE AIRFLOW FOLLOW-UP AUXILIARY SAND DISCHARGE APPARATUS AND METHOD FOR CUTTING FROZEN SAND MOLD

      
Numéro d'application 18008979
Statut En instance
Date de dépôt 2022-06-15
Date de la première publication 2024-01-25
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Shan, Zhongde
  • Yang, Haoqin
  • Liu, Qinjiang

Abrégé

A low-temperature airflow follow-up auxiliary sand discharge apparatus for cutting a frozen sand mold includes a frozen sand mold to be machined, a hollow cutter, a spindle mounted on the hollow cutter, an air pipe, and a refrigeration apparatus connected to one end of the air pipe. The refrigeration apparatus is fixed to an air pump by a valve. An inner cavity of the hollow cutter is provided with a cutter through hole along an axis. An inner cavity of the spindle is provided with a spindle through hole along the axis. An upper end of the spindle is provided with a bearing seat hole for placing a bearing. An outer circle of the bearing matches the bearing seat hole, and an inner circle of the bearing is mounted with an air pipe connector. The air pipe is connected and fixed to the air pipe connector.

Classes IPC  ?

  • B23B 27/10 - Outils de coupe avec une disposition particulière pour le refroidissement
  • B23B 51/04 - Outils pour machines à percer pour trépaner

11.

TRANS-MEDIA UNMANNED AERIAL VEHICLE DEVICE AND CONTROL METHOD THEREOF

      
Numéro d'application 17778911
Statut En instance
Date de dépôt 2021-06-04
Date de la première publication 2024-01-18
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Deng, Feng
  • Sun, Xiaoyuan

Abrégé

The present disclosure discloses a trans-media unmanned aerial vehicle device and a control method thereof. The trans-media unmanned aerial vehicle device includes a housing, and a piston which is arranged in the housing and is capable of moving in a reciprocating manner in the housing; one end of the housing is provided with an opening; several flying wings are uniformly arranged in a circumferential direction of the piston; the flying wings are rotatably connected to a side of the piston facing the opening and are spread or retracted like an umbrella; and under the pushing of the piston, the flying wings can be spread to the outside of the housing and retracted back into the housing.

Classes IPC  ?

  • B64U 20/50 - Véhicules aériens sans pilote pliables ou repliables
  • B64U 20/75 - Caractéristiques de construction du corps du véhicule aérien sans pilote le corps étant formé par des plaques assemblées ou par une plaque superposée à un châssis
  • B64U 70/00 - Dispositions pour le lancement, le décollage ou l'atterrissage
  • B64U 10/10 - Giravions

12.

METHOD FOR EXTRACTING FEATURE PATH SIGNALS OF PIPELINE ULTRASONIC HELICAL GUIDED WAVES

      
Numéro d'application 18176432
Statut En instance
Date de dépôt 2023-02-28
Date de la première publication 2024-01-04
Propriétaire Nanjing University of Aeronautics and Astronautics (Chine)
Inventeur(s)
  • Qian, Zhenghua
  • Qian, Zhi
  • Li, Peng
  • Yang, Chen

Abrégé

The present disclosure belongs to the technical field of ultrasonic non-destructive testing, and discloses a method for extracting feature path signals of pipeline ultrasonic helical guided waves. The method includes: transforming a nonlinear wave number relationship of a pipe wall into a linear form by first order Taylor expansion, the approximation being reasonable under narrow band excitation; on this basis, establishing multimodal and multipath guided wave propagation over-complete data sets, and obtaining a modal weight factor and a path weight factor through a single-layer neural network algorithm; and multiplying the modal weight factor by the multimodal data set to separate a plurality of groups of unimodal signals from a whole signal, and multiplying the path weight factor by the multipath data set to extract unimodal feature path signals. The present disclosure can effectively extract unimodal unipath guided wave feature signals and improve the signal identification, and has broad prospects.

Classes IPC  ?

  • G01N 29/46 - Traitement du signal de réponse détecté par analyse spectrale, p.ex. par analyse de Fourier
  • G01N 29/04 - Analyse de solides

13.

METHOD AND SYSTEM FOR DETECTING STRUCTURAL DEFECT IN ADDITIVE MANUFACTURING

      
Numéro d'application 18050656
Statut En instance
Date de dépôt 2022-10-28
Date de la première publication 2023-12-28
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Zhang, Chao
  • Wang, Zhaomin
  • Ji, Hongli
  • Qiu, Jinhao
  • Tao, Chongcong
  • Wang, Jun

Abrégé

The present disclosure relates to a method and system for detecting a structural defect in additive manufacturing. The method includes: layering a three-dimensional model of an additive manufacturing test piece to obtain a two-dimensional contour of an interface of each layer, and generating a machining path; arranging a non-contact sensor at a fixed measuring point of the additive manufacturing test piece, and acquiring an ultrasonic signal at each machining point when a pulse laser conducts machining point by point along the machining path; forming a visual ultrasonic field based on all the ultrasonic signals, and determining ultrasonic field data; determining, based on the ultrasonic field data, a curve of a peak of an incident wave changing with the machining path; and determining whether a machining defect exists at the machining points based on the curve of the peak of the incident wave changing with the machining path.

Classes IPC  ?

  • G01N 29/06 - Visualisation de l'intérieur, p.ex. microscopie acoustique
  • G01N 29/46 - Traitement du signal de réponse détecté par analyse spectrale, p.ex. par analyse de Fourier
  • G01N 29/22 - Recherche ou analyse des matériaux par l'emploi d'ondes ultrasonores, sonores ou infrasonores; Visualisation de l'intérieur d'objets par transmission d'ondes ultrasonores ou sonores à travers l'objet - Détails
  • B33Y 40/00 - Opérations ou équipements auxiliaires, p.ex. pour la manipulation de matériau
  • B33Y 50/00 - Acquisition ou traitement de données pour la fabrication additive

14.

MULTI-VIEW OUTLIER DETECTION FOR POTENTIAL RELATIONSHIP CAPTURE WITH PAIRED COMPARISON AVOIDANCE

      
Numéro d'application 17846149
Statut En instance
Date de dépôt 2022-06-22
Date de la première publication 2023-12-28
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Chen, Songcan
  • Zhong, Yingyu

Abrégé

A multi-view outlier detection algorithm based on the tensor representation is provided. Specifically, the multi-view data are firstly transformed into a set of tensors, and then its low-rank representation is learned. Finally, an outlier function is designed in the case of tensor representation to realize detection.

Classes IPC  ?

  • G06F 17/16 - Calcul de matrice ou de vecteur
  • G06F 17/11 - Opérations mathématiques complexes pour la résolution d'équations

15.

METHOD FOR PREPARING NEGATIVE PRESSURE FILM-COVERING FROZEN SAND MOLD

      
Numéro d'application 18037783
Statut En instance
Date de dépôt 2022-09-05
Date de la première publication 2023-12-14
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Yang, Haoqin
  • Shan, Zhongde
  • Liu, Qinjiang
  • Shi, Jianpei
  • Yan, Dandan
  • Dong, Shijie

Abrégé

A method for preparing a negative pressure film-covering frozen sand mold includes: directly obtaining a mold cavity of a sand mold through numerically controlled machining of a frozen sand blank; covering a surface, brushed with a thermal insulation coating, of the mold cavity of the sand mold with a softened thin film, and covering an outer surface of the sand mold with a back film to seal a sand box; fixing the frozen sand mold in an air extraction sand box with a vacuum chamber, and extracting air through a vacuum pump, so that the thin film tightly adheres to the sand mold through vacuum suction force; and closing the box to obtain an integral sand mold, and pouring a casting at room temperature or low temperature under negative pressure. The method is environment-friendly, and the prepared frozen sand mold has high strength and is convenient for sand cleaning.

Classes IPC  ?

  • B22C 9/12 - Traitement des moules ou noyaux, p.ex. séchage, étuvage
  • B22C 9/03 - Moules en sable ou moules analogues pour pièces coulées formés par moulage sous vide

16.

THREE-DIMENSIONAL SPECTRUM SITUATION COMPLETION METHOD AND DEVICE BASED ON GENERATIVE ADVERSARIAL NETWORK

      
Numéro d'application 18032573
Statut En instance
Date de dépôt 2022-01-25
Date de la première publication 2023-11-30
Propriétaire Nanjing University of Aeronautics and Astronautics (Chine)
Inventeur(s)
  • Huang, Yang
  • Zhu, Qiuming
  • Hu, Tianyu
  • Wu, Qihui
  • Gong, Zhiren
  • Wu, Xuan
  • Zhong, Weizhi
  • Mao, Kai
  • Zhang, Xiaofei
  • Lu, Yiwei

Abrégé

A three-dimensional (3D) spectrum situation completion method and device based on a generative adversarial network includes performing graying and coloring preprocessing based on incomplete 3D spectrum situations from historical or empirical spectrum data obtained by a UAV through sampling a target region, obtaining three-channel incomplete 3D spectrum situation maps displayed in colors, forming a training set based on the incomplete 3D spectrum situation maps; training the generative adversarial network based on the training set and obtaining a trained generator network in the generative adversarial network, performing graying and coloring preprocessing based on a measured incomplete 3D spectrum situation obtained by the UAV through sampling a specified measurement region, obtaining a three-channel measured incomplete 3D spectrum situation map displayed in colors, and using the measured incomplete 3D spectrum situation map as input data to the generator network to obtain a three-channel measured complete 3D spectrum situation map displayed in colors.

Classes IPC  ?

  • G06T 11/00 - Génération d'images bidimensionnelles [2D]
  • G06T 7/90 - Détermination de caractéristiques de couleur

17.

Electrochemical machining device and method for blisk using electrode array

      
Numéro d'application 18347260
Numéro de brevet 11878360
Statut Délivré - en vigueur
Date de dépôt 2023-07-05
Date de la première publication 2023-11-09
Date d'octroi 2024-01-23
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Zhu, Di
  • Duan, Shuanglu
  • Liu, Jia
  • Zhu, Dong

Abrégé

The present disclosure provides an electrochemical machining device and a method for a blisk using an electrode array, which relate to the technical field of electrochemical machining. The electrochemical machining device comprises an outer ring-shaped rotating ring, an inner ring-shaped base and a plurality of cathode rods. An inner diameter of the outer ring-shaped rotating ring is larger than an outer diameter of the inner ring-shaped base, and an inner diameter of the inner ring-shaped base is larger than an outer diameter of the blisk. The outer ring-shaped rotating ring and the inner ring-shaped base are coaxially arranged. Middle parts of the cathode rods are connected with the inner ring-shaped base, outer ends of the cathode rods are rotatably connected with the outer ring-shaped rotating ring, and inner ends of the cathode rods are provided with trepanning cathode pieces or radial feeding electrodes.

Classes IPC  ?

  • B23H 9/10 - Usinage d'aubes de turbine ou de buses
  • B23H 3/04 - Electrodes spécialement adaptées à cet effet ou leur fabrication
  • B23H 7/12 - Disques-électrodes tournants

18.

MULTI-CHANNEL ELECTROCHEMICAL MACHINING DEVICE AND METHOD FOR BLISK

      
Numéro d'application 18138610
Statut En instance
Date de dépôt 2023-04-24
Date de la première publication 2023-10-26
Propriétaire Nanjing University of Aeronautics and Astronautics (Chine)
Inventeur(s)
  • Liu, Jia
  • Duan, Shuanglu
  • Zhu, Di

Abrégé

Disclosed are a multi-channel electrochemical machining device and method for a blisk, and relate to the technical field of blisk electrochemical machining. The multi-channel electrochemical machining device for a blisk comprises an electrolytic bath used for accommodating an electrolyte, a blisk workpiece, a tube electrode and a top cover plate. The top cover plate is located above the blisk workpiece. An electrolysis chamber used for the tube electrode to electrolyze the blisk workpiece is formed between the lower surface of the top cover plate and the surface of the blisk workpiece. The electrolysis chamber communicates with the electrolytic bath. A drainage seam communicating the electrolysis chamber and the electrolytic bath along the axial direction of the blisk workpiece is formed in the upper surface of the top cover plate.

Classes IPC  ?

  • B23H 3/04 - Electrodes spécialement adaptées à cet effet ou leur fabrication
  • B23H 11/00 - Appareils auxiliaires ou détails non prévus ailleurs

19.

METHOD FOR IMPLEMENTING FAULT DIAGNOSIS BY MEANS OF SPREAD SPECTRUM CARRIER

      
Numéro d'application 18005974
Statut En instance
Date de dépôt 2021-10-19
Date de la première publication 2023-10-12
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Wang, Li
  • Chen, Weijia

Abrégé

A method for implementing fault diagnosis by means of a spread spectrum carrier includes the following steps: designing incident signal parameters, selecting a spread spectrum sequence for fault detection, determining a center frequency and a sequence length of a spread spectrum code, and segmenting and transforming a power carrier source signal; using the fault detection spread spectrum sequence as a carrier spread spectrum code, and performing spread spectrum modulation on the transformed power carrier source signal to generate an SSPLCR sequence; coupling the SSPLCR sequence to a cable to be tested, and when the cable works normally without failure, transmitting the SSPLCR signal to the receiving terminal via the cable; when the cable fails, reflecting the SSPLCR signal back to the transmitting terminal.

Classes IPC  ?

  • H04B 3/46 - Surveillance; Tests
  • H04B 3/54 - Systèmes de transmission par lignes de réseau de distribution d'énergie
  • H04B 1/7087 - Aspects de la synchronisation de la porteuse

20.

Semantic segmentation method for aircraft point cloud based on voxelization and three views

      
Numéro d'application 18320280
Numéro de brevet 11836896
Statut Délivré - en vigueur
Date de dépôt 2023-05-19
Date de la première publication 2023-10-12
Date d'octroi 2023-12-05
Propriétaire Nanjing University of Aeronautics and Astronautics (Chine)
Inventeur(s)
  • Wang, Jun
  • Xiao, Kun
  • Li, Zikuan
  • Zhong, Tianchi

Abrégé

A semantic segmentation method for aircraft point cloud based on voxelization and three views, including: filtering a collected point cloud followed by centralization to obtain a centralized point cloud; inputting the centralized point cloud into a T-Net rotation matrix network; rotating the centralized point cloud to a front side followed by voxelization to obtain a voxelized point cloud; subjecting the voxelized point cloud to voxel filling to obtain a voxel-filled point cloud; calculating thickness maps of three views of the voxel-filled point cloud, followed by sequentially stitching and inputting to the point cloud semantic segmentation network to train the point cloud semantic segmentation network; inputting the collected point cloud into the trained point cloud semantic segmentation network; and predicting a result semantic segmentation of a 3D point cloud of the aircraft.

Classes IPC  ?

  • G06T 3/60 - Rotation d'une image entière ou d'une partie d'image
  • G06T 3/40 - Changement d'échelle d'une image entière ou d'une partie d'image

21.

METHOD FOR FEATURE DETECTION OF COMPLEX DEFECTS BASED ON MULTIMODAL DATA

      
Numéro d'application 17972942
Statut En instance
Date de dépôt 2022-10-25
Date de la première publication 2023-10-05
Propriétaire Nanjing University of Aeronautics and Astronautics (Chine)
Inventeur(s)
  • Wang, Jun
  • Wu, Yuxiang
  • Li, Dawei
  • Zhang, Yuan

Abrégé

The present disclosure disclose a method for feature detection of complex defects based on multimodal data, including feature extraction of multimodal data, multimodal feature cross-guided learning, multimodal feature fusion, and defect classification and regression. Feature extraction networks for multimodal two-dimensional data are constructed first, and a defect data set is sent to the networks for training; during training, cross-guided learning is implemented by using a multimodal feature cross-guidance network; then feature fusion is performed by using a weight adaptive method; and finally a defect detection task is implemented by using a classification subnetwork and a regression subnetwork. In the present disclosure, fusion of the multimodal data in a process of feature detection of the complex defects can be implemented efficiently, a capability of detecting the complex defects in an industrial environment can be improved more effectively, and production efficiency in an industrial manufacturing process is ensured.

Classes IPC  ?

  • G06V 10/82 - Dispositions pour la reconnaissance ou la compréhension d’images ou de vidéos utilisant la reconnaissance de formes ou l’apprentissage automatique utilisant les réseaux neuronaux
  • G06V 10/774 - Dispositions pour la reconnaissance ou la compréhension d’images ou de vidéos utilisant la reconnaissance de formes ou l’apprentissage automatique utilisant l’intégration et la réduction de données, p.ex. analyse en composantes principales [PCA] ou analyse en composantes indépendantes [ ICA] ou cartes auto-organisatrices [SOM]; Séparation aveugle de source méthodes de Bootstrap, p.ex. "bagging” ou “boosting”
  • G06V 10/80 - Fusion, c. à d. combinaison des données de diverses sources au niveau du capteur, du prétraitement, de l’extraction des caractéristiques ou de la classification

22.

Feature-guided scanning trajectory optimization method for three-dimensional measurement robot

      
Numéro d'application 18321840
Numéro de brevet 11938636
Statut Délivré - en vigueur
Date de dépôt 2023-05-23
Date de la première publication 2023-10-05
Date d'octroi 2024-03-26
Propriétaire Nanjing University of Aeronautics and Astronautics (Chine)
Inventeur(s)
  • Wang, Jun
  • Zeng, Hangbin
  • Liu, Yuanpeng
  • Kang, Zhengshui
  • Yang, Jianping

Abrégé

A feature-guided scanning trajectory optimization method for a 3D measurement robot, including: building a 3D digital model of an aircraft surface; obtaining a size of the 3D digital model; extracting features to be measured; classifying the features to be measured; calculating a geometric parameter of each type of features to be measured; generating an initial scanning trajectory of each type of features to be measured; building a constraint model of the 3D measurement robot; optimizing the initial scanning trajectory into a local optimal scanning trajectory; and planning a global optimal scanning trajectory of each type of features to be measured on the aircraft surface by using a modified ant colony optimization algorithm.

Classes IPC  ?

  • B25J 9/16 - Commandes à programme
  • G01B 21/20 - Dispositions pour la mesure ou leurs détails, où la technique de mesure n'est pas couverte par les autres groupes de la présente sous-classe, est non spécifiée ou est non significative pour mesurer des contours ou des courbes, p.ex. pour déterminer un profil
  • B25J 19/02 - Dispositifs sensibles

23.

Semantic learning-based down-sampling method of point cloud data of aircraft

      
Numéro d'application 18316317
Numéro de brevet 11830164
Statut Délivré - en vigueur
Date de dépôt 2023-05-12
Date de la première publication 2023-09-28
Date d'octroi 2023-11-28
Propriétaire Nanjing University of Aeronautics and Astronautics (Chine)
Inventeur(s)
  • Wang, Jun
  • Shan, Zhongde
  • Zhang, Kaijun
  • Li, Zikuan
  • Li, Chao

Abrégé

This application discloses a semantic learning-based down-sampling method of point cloud data of an aircraft, including: (S1) constructing a multi-input encoder based on feature learning according to point cloud semantic learning principle; inputting the point cloud data of the aircraft and feature point data into the multi-input encoder for feature fusion followed by decoding using a decoder the multi-input feature fused data to obtain to-be-measured data; (S2) constructing and training a point cloud feature weight calculation network based on semantic learning to acquire a feature weight of each point in the to-be-measured data; and (S3) performing spatial weighted sampling on the feature weight of each point in the to-be-measured data followed by down-sampling based on Gaussian distribution-based spatial sampling principle.

Classes IPC  ?

  • G06T 3/40 - Changement d'échelle d'une image entière ou d'une partie d'image

24.

CROSS-SCALE DEFECT DETECTION METHOD BASED ON DEEP LEARNING

      
Numéro d'application 18321527
Statut En instance
Date de dépôt 2023-05-22
Date de la première publication 2023-09-28
Propriétaire Nanjing University of Aeronautics and Astronautics (Chine)
Inventeur(s)
  • Wang, Jun
  • Shan, Zhongde
  • Dai, Li
  • Li, Dawei

Abrégé

A cross-scale defect detection method based on deep learning, including: (S1) building a vision data acquisition system to acquire a surface image of a part to be processed; and building a defect dataset; (S2) building a deep learning-based cross-scale defect detection model; and inputting the defect dataset obtained in the step (S1) into the deep learning-based cross-scale defect detection model for model training; and (S3) building a defect detection system according to the deep learning-based cross-scale defect detection model and the vision data acquisition system; and detecting a defect of the surface image of the part to be processed.

Classes IPC  ?

  • G06T 7/00 - Analyse d'image
  • G06V 20/70 - RECONNAISSANCE OU COMPRÉHENSION D’IMAGES OU DE VIDÉOS Éléments spécifiques à la scène Étiquetage du contenu de scène, p.ex. en tirant des représentations syntaxiques ou sémantiques
  • G06V 10/77 - Dispositions pour la reconnaissance ou la compréhension d’images ou de vidéos utilisant la reconnaissance de formes ou l’apprentissage automatique utilisant l’intégration et la réduction de données, p.ex. analyse en composantes principales [PCA] ou analyse en composantes indépendantes [ ICA] ou cartes auto-organisatrices [SOM]; Séparation aveugle de source
  • G06V 10/80 - Fusion, c. à d. combinaison des données de diverses sources au niveau du capteur, du prétraitement, de l’extraction des caractéristiques ou de la classification

25.

POINT CLOUD DENOISING METHOD BASED ON MULTI-LEVEL ATTENTION PERCEPTION

      
Numéro d'application 18049203
Statut En instance
Date de dépôt 2022-10-24
Date de la première publication 2023-09-28
Propriétaire Nanjing University of Aeronautics and Astronautics (Chine)
Inventeur(s)
  • Wang, Jun
  • Huang, Anyi
  • Wang, Zhoutao
  • Liu, Yuanpeng

Abrégé

The present disclosure provides a point cloud denoising method based on multi-level attention perception, including the following steps: constructing a data set of point cloud denoising; constructing a point cloud denoising neural network, including a patch feature encoder, a global level perception module, a global level attention module, and a multi-offset decoder module, and training a network model by using the data set of point cloud denoising; for input point cloud, separately obtaining a neighborhood patch of a point of each original data point, and inputting coordinates of each data point in the neighborhood patch of a point to a trained denoising neural network to obtain a location offset of each original point; and separately adjusting, based on the obtained location offset, a location corresponding to each original data point in the input point cloud, to complete point cloud denoising.

Classes IPC  ?

  • G06N 3/04 - Architecture, p.ex. topologie d'interconnexion
  • G06T 5/00 - Amélioration ou restauration d'image

26.

Method for ultrasonic guided wave quantitative imaging in form of variable array

      
Numéro d'application 18176439
Numéro de brevet 11768180
Statut Délivré - en vigueur
Date de dépôt 2023-02-28
Date de la première publication 2023-09-26
Date d'octroi 2023-09-26
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Qian, Zhenghua
  • Qian, Zhi
  • Li, Peng
  • Wu, Xianwei
  • Yang, Chen
  • Zhang, Yinghong

Abrégé

k to be solved. According to the present disclosure, by adjusting the arrays, the number of probes and appropriate solution algorithm can be selected based on the testing accuracy; and the method can achieve quantitative evaluation of non-destructive testing, and can be widely used in practical guided wave testing applications of industrial non-destructive testing.

Classes IPC  ?

27.

METHOD FOR ANALYZING MINOR DEFECT BASED ON PROGRESSIVE SEGMENTATION NETWORK

      
Numéro d'application 18049202
Statut En instance
Date de dépôt 2022-10-24
Date de la première publication 2023-09-21
Propriétaire Nanjing University of Aeronautics and Astronautics (Chine)
Inventeur(s)
  • Wang, Jun
  • Tu, Qifan
  • Li, Dawei
  • Yi, Cheng

Abrégé

The present disclosure provides a method for analyzing a minor defect based on a progressive segmentation network, including: acquiring an original image for a surface of a component, and cropping the original image into a plurality of patches; inputting each of the patches to a minor defect feature extraction network to extract an image feature; classifying the patch into a defective image or a non-defective background image according to an extracted image feature; inputting an extracted image feature of the defective image to a defect segmentation network to obtain a segmentation mask image of a corresponding defect; and quantitatively analyzing the defect according to the segmentation mask image to obtain information such as an area, a length and a width of the defect.

Classes IPC  ?

  • G06T 7/00 - Analyse d'image
  • G06T 7/194 - Découpage; Détection de bords impliquant une segmentation premier plan-arrière-plan
  • G06T 7/12 - Découpage basé sur les bords

28.

METHOD FOR MULTI-VIEW POINT CLOUD REGISTRATION FOR WHOLE AIRCRAFT BASED ON SPHERICAL HARMONIC FEATURE (SHF)

      
Numéro d'application 18169985
Statut En instance
Date de dépôt 2023-02-16
Date de la première publication 2023-09-21
Propriétaire Nanjing University of Aeronautics and Astronautics (Chine)
Inventeur(s)
  • Wang, Jun
  • Zhang, Yuan
  • Li, Hu
  • Li, Zuikuan

Abrégé

The present disclosure discloses a method for multi-view point cloud registration for a whole aircraft based on a spherical harmonic feature (SHF). Gaussian sphere projection is mainly performed on a local point cloud. An SHF of each point is obtained by using a spherical harmonic transform technology. A constraint correspondence between feature points is found based on an SHF of each point in the point cloud. Multi-view point cloud data registration is performed according to an optimization graph method under a constraint of the SHF. A key of multi-view point cloud registration is to search for feature constraint relationships between different observation stations and perform non-linear solution based on these relationships, so as to obtain a pose parameter of a point cloud in each viewing angle.

Classes IPC  ?

  • G06T 19/20 - Transformation de modèles ou d'images tridimensionnels [3D] pour infographie Édition d'images tridimensionnelles [3D], p.ex. modification de formes ou de couleurs, alignement d'objets ou positionnements de parties
  • G06T 3/00 - Transformation géométrique de l'image dans le plan de l'image
  • G06T 5/00 - Amélioration ou restauration d'image
  • G06T 7/64 - Analyse des attributs géométriques de la convexité ou de la concavité

29.

Few-shot defect detection method based on metric learning

      
Numéro d'application 18316326
Numéro de brevet 11823425
Statut Délivré - en vigueur
Date de dépôt 2023-05-12
Date de la première publication 2023-09-07
Date d'octroi 2023-11-21
Propriétaire Nanjing University of Aeronautics and Astronautics (Chine)
Inventeur(s)
  • Wang, Jun
  • Shan, Zhongde
  • Hua, Shiyan
  • Li, Dawei

Abrégé

2N) based on metric learning; and performing target feature extraction and metric learning in sequence to realize rapid identification and location of defects.

Classes IPC  ?

  • G06V 10/774 - Dispositions pour la reconnaissance ou la compréhension d’images ou de vidéos utilisant la reconnaissance de formes ou l’apprentissage automatique utilisant l’intégration et la réduction de données, p.ex. analyse en composantes principales [PCA] ou analyse en composantes indépendantes [ ICA] ou cartes auto-organisatrices [SOM]; Séparation aveugle de source méthodes de Bootstrap, p.ex. "bagging” ou “boosting”
  • G06T 7/00 - Analyse d'image
  • G06V 10/764 - Dispositions pour la reconnaissance ou la compréhension d’images ou de vidéos utilisant la reconnaissance de formes ou l’apprentissage automatique utilisant la classification, p.ex. des objets vidéo
  • G06T 7/73 - Détermination de la position ou de l'orientation des objets ou des caméras utilisant des procédés basés sur les caractéristiques
  • G06V 10/77 - Dispositions pour la reconnaissance ou la compréhension d’images ou de vidéos utilisant la reconnaissance de formes ou l’apprentissage automatique utilisant l’intégration et la réduction de données, p.ex. analyse en composantes principales [PCA] ou analyse en composantes indépendantes [ ICA] ou cartes auto-organisatrices [SOM]; Séparation aveugle de source
  • G06V 10/82 - Dispositions pour la reconnaissance ou la compréhension d’images ou de vidéos utilisant la reconnaissance de formes ou l’apprentissage automatique utilisant les réseaux neuronaux

30.

Method and device for measuring four-dimensional (4D) radiation pattern of outdoor antenna based on unmanned aerial vehicle (UAV)

      
Numéro d'application 18025681
Numéro de brevet 11783713
Statut Délivré - en vigueur
Date de dépôt 2021-05-06
Date de la première publication 2023-08-31
Date d'octroi 2023-10-10
Propriétaire Nanjing University of Aeronautics and Astronautics (Chine)
Inventeur(s)
  • Wu, Qihui
  • Zhu, Qiuming
  • Lan, Tianxu
  • Huang, Yang
  • Li, Jie
  • Du, Xiaofu
  • Zhong, Weizhi
  • Han, Lu
  • Bai, Yunpeng
  • Zhang, Junjie
  • Mao, Kai

Abrégé

A method and a device for measuring a four-dimensional (4D) radiation pattern of an outdoor antenna based on an unmanned aerial vehicle (UAV) are provided. The device includes a measurement path planning unit, a UAV platform unit, a radiation signal acquisition unit, a data command processing unit, and a ground data processing unit. The measurement path planning unit, the radiation signal acquisition unit, and the data command processing unit each are suspended from the UAV platform unit by using a pod. The present disclosure applies to the radiation pattern measurement of an outdoor antenna.

Classes IPC  ?

  • G08G 5/00 - Systèmes de commande du trafic aérien
  • G05D 1/10 - Commande de la position ou du cap dans les trois dimensions simultanément
  • G05D 1/00 - Commande de la position, du cap, de l'altitude ou de l'attitude des véhicules terrestres, aquatiques, aériens ou spatiaux, p.ex. pilote automatique

31.

Method for analyzing fuselage profile based on measurement data of whole aircraft

      
Numéro d'application 18313410
Numéro de brevet 11941329
Statut Délivré - en vigueur
Date de dépôt 2023-05-08
Date de la première publication 2023-08-31
Date d'octroi 2024-03-26
Propriétaire Nanjing University of Aeronautics and Astronautics (Chine)
Inventeur(s)
  • Wang, Jun
  • Zhong, Tianchi
  • Shan, Zhongde
  • Zhang, Yuan
  • Xiao, Kun

Abrégé

l median curve-skeleton concept of point cloud, extracting a medial axis from the point-cloud data of the fuselage component; uniformly sampling the medial axis into a plurality of skeleton points; extracting a discrete point set of a cross-section contour of the fuselage component; performing circle fitting on the discrete point set to obtain a fitted circle and parameters thereof; calculating a deformation displacement measurement indicator μ of the cross-section of the fuselage component to evaluate cross-section contour of the fuselage.

Classes IPC  ?

  • G06F 30/15 - Conception de véhicules, d’aéronefs ou d’embarcations
  • B64C 1/00 - Fuselages; Caractéristiques structurales communes aux fuselages, voilures, surfaces stabilisatrices ou organes apparentés

32.

Subtle defect detection method based on coarse-to-fine strategy

      
Numéro d'application 18306166
Numéro de brevet 11790517
Statut Délivré - en vigueur
Date de dépôt 2023-04-24
Date de la première publication 2023-08-17
Date d'octroi 2023-10-17
Propriétaire Nanjing University of Aeronautics and Astronautics (Chine)
Inventeur(s)
  • Wang, Jun
  • Shan, Zhongde
  • Jia, Shuyi
  • Li, Dawei
  • Wu, Yuxiang

Abrégé

A subtle defect detection method based on coarse-to-fine strategy, including: (S1) acquiring data of an image to be detected via a charge-coupled device (CCD) camera; (S2) constructing a defect area location network and preprocessing the image to be detected to initially determine a defect position; (S3) constructing a defect point detection network; and training the defect point detection network by using a defect segmentation loss function; and (S4) subjecting subtle defects in the image to be detected to quantitative extraction and segmentation via the defect point detection network.

Classes IPC  ?

  • G06T 7/00 - Analyse d'image
  • G06T 7/73 - Détermination de la position ou de l'orientation des objets ou des caméras utilisant des procédés basés sur les caractéristiques

33.

METHOD FOR CALCULATING GASEOUS DIFFUSION AND OXIDATION EVOLUTION OF CERAMIC MATRIX COMPOSITE (CMC) STRUCTURE

      
Numéro d'application 17586384
Statut En instance
Date de dépôt 2022-01-27
Date de la première publication 2023-07-27
Propriétaire Nanjing University of Aeronautics and Astronautics (Chine)
Inventeur(s)
  • Gao, Xiguang
  • Song, Yingdong
  • Yu, Guoqiang
  • Zhang, Sheng
  • Shi, Xiaoting
  • Ni, Zheng

Abrégé

A method is provided for calculating gaseous diffusion and oxidation evolution of a ceramic matrix composite (CMC) structure, which includes determining temperature and load distribution in a structural member; determining matrix crack distribution in the structure; establishing an equivalent diffusion coefficient model of a fiber bundle scale to predict a gas flow channel in a fiber bundle: averaging a total amount of gaseous diffusion in the channel to establish the equivalent diffusion coefficient model of the fiber bundle composite scale related to the matrix crack distribution; establishing a representative volume element (RVE) model; establishing an equivalent diffusion coefficient model of a RVE scale; calculating the distribution of the gas concentration and oxidation products in the structure; calculating a growth thickness of an oxide at cracks and pores in each element; and updating sealing conditions of the gas channel, and calculating a new equivalent diffusion coefficient field and the distribution of the oxidation products again.

Classes IPC  ?

  • C04B 35/52 - Produits céramiques mis en forme, caractérisés par leur composition; Compositions céramiques; Traitement de poudres de composés inorganiques préalablement à la fabrication de produits céramiques à base de non oxydes à base de carbone, p.ex. graphite
  • C04B 35/80 - Fibres, filaments, "whiskers", paillettes ou analogues
  • C03C 10/00 - Verre dévitrifié ou vitrocéramiques, c. à d. verre ou céramiques ayant une phase cristalline dispersée dans la phase vitreuse et constituant au moins 50% en poids de la composition

34.

Multipath suppression method based on steepest descent method

      
Numéro d'application 18041711
Numéro de brevet 11716106
Statut Délivré - en vigueur
Date de dépôt 2021-07-09
Date de la première publication 2023-07-20
Date d'octroi 2023-08-01
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Zeng, Qinghua
  • Qiu, Wenqi
  • Liu, Jianye
  • Xu, Rui
  • Sun, Yongrong
  • Li, Rongbing
  • Lyu, Pin
  • Zhao, Wei
  • Xiong, Zhi
  • Lai, Jizhou

Abrégé

A multipath suppression method based on a steepest descent method includes stripping, according to carrier Doppler shift information fed back by a phase-locked loop, a carrier from an intermediate-frequency signal input into a tracking loop; constructing, on the basis of the autocorrelation characteristics of a ranging code, a quadratic cost function related to a measurement deviation of the ranging code, the cost function being not affected by a multipath signal; and finally, designing a new tracking loop of the ranging code according to the quadratic cost function and the principle of the steepest descent method, such that the loop has a multipath suppression function without increasing the computational burden. Compared with a narrow-distance correlation method, the current method reduces computing resources by ⅓, the design and adjustment of parameters are simple and feasible, a multipath suppression effect is superior, and a high engineering application value is obtained.

Classes IPC  ?

  • H04B 1/18 - Circuits d'entrée, p.ex. pour le couplage à une antenne ou à une ligne de transmission
  • H04B 1/10 - Dispositifs associés au récepteur pour limiter ou supprimer le bruit et les interférences
  • G01S 19/30 - Acquisition ou poursuite des signaux émis par le système lié au code
  • G01S 19/25 - Acquisition ou poursuite des signaux émis par le système faisant intervenir des données d'assistance reçues en provenance d'un élément coopérant, p.ex. un GPS assisté
  • G01S 19/22 - Problèmes liés aux multitrajets

35.

Intelligent data and knowledge-driven method for modulation recognition

      
Numéro d'application 17901860
Numéro de brevet 11700156
Statut Délivré - en vigueur
Date de dépôt 2022-09-02
Date de la première publication 2023-07-11
Date d'octroi 2023-07-11
Propriétaire Nanjing University of Aeronautics and Astronautics (Chine)
Inventeur(s)
  • Zhou, Fuhui
  • Ding, Rui
  • Xu, Ming
  • Zhang, Hao
  • Yuan, Lu
  • Wu, Qihui
  • Dong, Chao

Abrégé

An intelligent data and knowledge-driven method for modulation recognition includes the following steps: collecting spectrum data; constructing corresponding attribute vector labels for different modulation schemes; constructing and pre-training an attribute learning model based on the attribute vector labels for different modulation schemes; constructing and pre-training a visual model for modulation recognition; constructing a feature space transformation model, and constructing an intelligent data and knowledge-driven model for modulation recognition based on the attribute learning model and the visual model; transferring parameters of the pre-trained visual model and the pre-trained attribute learning model and retraining the transformation model; and determining whether training on a network is completed and outputting a classification result. The intelligent data and knowledge-driven method for modulation recognition significantly improves the recognition accuracy at low SNRs and reduces the confusion between higher-order modulation schemes.

Classes IPC  ?

  • H04L 27/00 - Systèmes à porteuse modulée
  • G06N 3/08 - Méthodes d'apprentissage
  • G06N 5/02 - Représentation de la connaissance; Représentation symbolique

36.

WEARABLE CABLE-DRIVEN ROBOTIC ARM SYSTEM

      
Numéro d'application 17926833
Statut En instance
Date de dépôt 2021-01-28
Date de la première publication 2023-06-22
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Wang, Yaoyao
  • Fu, Hao
  • Chen, Bai

Abrégé

A wearable cable-driven robotic arm system includes a wearing mechanism, two robotic arms located on two sides of the wearing mechanism, cable driving devices, a load trolley, and a motor controller, where the cable driving devices are divided into driving portions and driven portions, heavy objects, such as electric motors, of the driving portions are arranged in the load trolley, thereby reducing loads born by the wearable robotic arms, the load trolley can travel with a person by means of sleeves or can be controlled by the motor controller to move by means of signals measured by following modules, the driven portions are combined with the robotic arms, and are double-cable driven, thereby reducing weight of the robotic arms, and a brain-computer interface module is used for controlling the driving devices, thereby controlling the robotic arms more accurately.

Classes IPC  ?

  • B25J 9/00 - Manipulateurs à commande programmée
  • B25J 17/02 - Joints articulés
  • B25J 18/04 - Bras extensibles rotatifs
  • B25J 13/08 - Commandes pour manipulateurs au moyens de dispositifs sensibles, p.ex. à la vue ou au toucher
  • B25J 9/10 - Manipulateurs à commande programmée caractérisés par des moyens pour régler la position des éléments manipulateurs

37.

FREE-BENDING FORMING APPARATUS FOR TUBULAR COMPONENT MADE OF DIFFICULT-TO-DEFORM MATERIAL USING DIFFERENTIAL TEMPERATURES AND METHOD THEREOF

      
Numéro d'application 17977562
Statut En instance
Date de dépôt 2022-10-31
Date de la première publication 2023-06-22
Propriétaire Nanjing University of Aeronautics and Astronautics (Chine)
Inventeur(s)
  • Guo, Xunzhong
  • Liu, Chunmei
  • Cheng, Cheng
  • Ni, Haoqi
  • Wu, Cong

Abrégé

A free-bending forming apparatus for a tubular component using differential temperatures and a method thereof are disclosed. The apparatus includes an isothermal heating device and a heating device for the differential temperatures. The isothermal heating device is configured to preheat an inside and an outside of a bending section of the tubular component to a predetermined temperature to form a preheated bending section before bending and forming. The heating device for the differential temperatures is configured to heat the inside and the outside of the preheated bending section of the tubular component respectively to different temperatures, and the temperature at the outside is higher than that at the inside. The heating device for the differential temperatures is provided between a pressing device and a guiding mechanism, and the isothermal heating device is provided between the pressing device and the heating device for the differential temperatures.

Classes IPC  ?

  • B21D 37/16 - Chauffage ou refroidissement
  • B21D 7/06 - Cintrage des barres, profilés ou tubes dans des presses particulières ou entre des marteaux et des enclumes ou des butées; Pinces comportant des matrices de formage

38.

Coaxial powder-feeding nozzle used for additive manufacturing on inner wall and having self-cleaning function

      
Numéro d'application 18000830
Numéro de brevet 11826827
Statut Délivré - en vigueur
Date de dépôt 2021-10-21
Date de la première publication 2023-06-22
Date d'octroi 2023-11-28
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Gu, Dongdong
  • Shi, Xinyu
  • Li, Yanze
  • Dai, Donghua
  • Ge, Qing
  • Sun, Yixuan

Abrégé

A coaxial powder-feeding nozzle includes a partition wall-type shell, a powder flow area, a cooling liquid flow area and a shielding gas conveying channel. A powder self-cleaning filter is on the outer side of the partition wall-type shell; the powder self-cleaning filter includes a set of powder collecting tubes on each side of the partition wall-type shell in the axial direction; each set of powder collecting tubes includes at least one powder collecting tube; under the coaction of a suction force applied by a powder collecting system and the self-weight of residual powder, a residual powder inlet of each powder collecting tube causes the residual powder on the opposite side to roll down to the bottom along the wall surface of a metal tube to be processed on the same side, and to be gathered at the front end of the residual powder inlet of the powder collecting tube.

Classes IPC  ?

39.

METHOD FOR PREDICTING CREEP DAMAGE AND DEFORMATION EVOLUTION BEHAVIOR WITH TIME

      
Numéro d'application 18094659
Statut En instance
Date de dépôt 2023-01-09
Date de la première publication 2023-06-15
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Song, Yingdong
  • Zhao, Xu
  • Sun, Zhigang
  • Niu, Xuming

Abrégé

Disclosed is a method for predicting creep damage and deformation evolution behavior with time, which comprises the following steps: obtaining tensile strength σb through high-temperature tensile test; obtaining the strain curve, minimum creep rate {dot over (ε)}m and life tƒ through creep test; obtaining the threshold stress σth at different temperatures; establishing the relationship between the tensile strength σb, the threshold stress σth and the temperature T; establishing the prediction formulas of the minimum creep rate σth and creep life σb based on the threshold stress {dot over (ε)}m and the tensile strength tƒ; establishing a creep damage constitutive model, including strain rate formula and damage rate formula; obtaining the evolution behavior of strain and deformation with time; obtaining the evolution behavior of damage with time.

Classes IPC  ?

  • G01N 3/08 - Recherche des propriétés mécaniques des matériaux solides par application d'une contrainte mécanique par application d'efforts permanents de traction ou de compression
  • G01N 3/02 - Recherche des propriétés mécaniques des matériaux solides par application d'une contrainte mécanique - Parties constitutives

40.

Chassis-by-wire cyber physical system in intelligent traffic environment, and control method

      
Numéro d'application 17924995
Numéro de brevet 11858525
Statut Délivré - en vigueur
Date de dépôt 2021-12-15
Date de la première publication 2023-06-15
Date d'octroi 2024-01-02
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Zhao, Wanzhong
  • Zhou, Xiaochuan
  • Wang, Chunyan
  • Luan, Zhongkai
  • Zhang, Ziyu
  • Zhong, Yixin
  • Zhang, Bo

Abrégé

Disclosed are a drive-by-wire chassis cyber-physical system under an intelligent traffic environment and a control method. The system includes: an SoS-level CPS, a system-level CPS, and a unit-level CPS, data transmission is realized between a plurality of unit-level CPSs and one system-level CPS, and data transmission is realized between a plurality of system-level CPSs and one SoS-level CPS. The system integrates a hub motor with a suspension, cancels traditional structures such as an engine and a clutch, and simplifies the structure of a chassis. A motor directly drives a vehicle to run, and different driving, braking or torque is applied to different wheels through four hub motors, so as to meet independent control of the wheels and improve active safety and operational stability.

Classes IPC  ?

  • B60W 50/12 - Limitation de la possibilité de commande du conducteur en fonction de l'état du véhicule, p.ex. moyens de verrouillage des grandeurs d'entrées pour éviter un fonctionnement dangereux
  • B60W 40/09 - Style ou comportement de conduite
  • B60W 50/10 - Interprétation des requêtes ou demandes du conducteur

41.

Method for jointly estimating gain-phase error and direction of arrival (DOA) based on unmanned aerial vehicle (UAV) array

      
Numéro d'application 17882636
Numéro de brevet 11681006
Statut Délivré - en vigueur
Date de dépôt 2022-08-08
Date de la première publication 2023-05-25
Date d'octroi 2023-06-20
Propriétaire Nanjing University of Aeronautics and Astronautics (Chine)
Inventeur(s)
  • Li, Jianfeng
  • Zhang, Qiting
  • Jin, Benzhou
  • Zhang, Xiaofei
  • Wu, Qihui

Abrégé

A method for jointly estimating gain-phase error and direction of arrival (DOA) based on an unmanned aerial vehicle (UAV) array includes: equipping each UAV with an antenna, and forming a receive array through a swarm of multiple UAVs to receive source signals; when an observation baseline of the swarm remains unchanged, changing array manifold through movement of the UAVs, and re-sensing the source signals; for each sensed source signals, calculating a covariance matrix, and obtaining a corresponding noise subspace through eigenvalue decomposition; and constructing a quadratic optimization problem based on the noise subspace and array steering vector, constructing a cost function, and implementing joint estimation of the gain-phase error and the DOA through spectrum peak search. The method can jointly estimate the DOA and gain-phase error and calibrate the gain-phase error, thereby improving accuracy of passive positioning.

Classes IPC  ?

  • G01S 3/14 - Systèmes pour déterminer une direction ou une déviation par rapport à une direction prédéterminée
  • G01S 3/02 - Radiogoniomètres pour déterminer la direction d'où proviennent des ondes infrasonores, sonores, ultrasonores ou électromagnétiques ou des émissions de particules sans caractéristiques de direction utilisant des ondes radio

42.

Brain-inspired cognitive learning method

      
Numéro d'application 17786564
Numéro de brevet 11948092
Statut Délivré - en vigueur
Date de dépôt 2021-11-08
Date de la première publication 2023-05-04
Date d'octroi 2024-04-02
Propriétaire Nanjing University of Aeronautics and Astronautics (Chine)
Inventeur(s)
  • Wu, Qihui
  • Ruan, Tianchen
  • Zhao, Shijin
  • Zhou, Fuhui
  • Huang, Yang

Abrégé

A brain-inspired cognitive learning method can obtain good learning results in various environments and tasks by selecting the most suitable algorithm models and parameters based on the environments and tasks, and can correct wrong behavior. The framework includes four main modules: a cognitive feature extraction module, a cognitive control module, a learning network module, and a memory module. The memory module includes a data base, a cognitive case base, and an algorithm and hyper-parameter base, which store data of dynamic environments and tasks, cognitive cases, and concrete algorithms and hyper-parameter values, respectively. For dynamic environments and tasks, the most suitable algorithm model and hyper-parameter combination can be flexibly selected. In addition, with “good money drives out bad”, mislabeled data is corrected using correctly labeled data, to achieve robustness of training data.

Classes IPC  ?

  • G06N 3/0985 - Optimisation d’hyperparamètres; Meta-apprentissage; Apprendre à apprendre

43.

Multifunctional electric recirculating ball steering system for commercial vehicles and control method thereof

      
Numéro d'application 17924332
Numéro de brevet 11753066
Statut Délivré - en vigueur
Date de dépôt 2021-12-15
Date de la première publication 2023-04-20
Date d'octroi 2023-09-12
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Zhao, Wanzhong
  • Zhang, Ziyu
  • Wang, Chunyan
  • Zhou, Xiaochuan
  • Wu, Gang
  • Luan, Zhongkai
  • Ye, Yulin

Abrégé

A multifunctional electric recirculating ball steering system for commercial vehicles and its control method are described. The system comprises three modules: an electric power module, a mechanical transmission module, and a control module. The system introduces a dual-rotor motor and a common power motor, working together to act on the input end of a recirculating ball steering gear. The dual-rotor motor offers high redundancy, increased output torque, and improved reliability for control-by-wire operations. A fork assembly enables synchronous and asynchronous rotation of the dual rotors, achieving both steer-by-wire and electric power steering functions. Leveraging the high reduction ratio capability of the recirculating ball steering gear maximizes power torque and simplifies the system architecture while ensuring reliability in both traditional control and control-by-wire functionalities.

Classes IPC  ?

  • B62D 3/08 - Boîtiers de direction mécaniques du type à vis sans fin à vis et écrou utilisant des billes intermédiaires ou des éléments analogues
  • B62D 5/04 - Direction assistée ou à relais de puissance électrique, p.ex. au moyen d'un servomoteur relié au boîtier de direction ou faisant partie de celui-ci
  • B62D 15/02 - Indicateurs de direction ou aides de direction
  • H02K 7/06 - Moyens de transformation d'un mouvement alternatif en un mouvement circulaire ou vice versa
  • H02K 7/08 - Association structurelle avec des paliers
  • H02K 16/02 - Machines avec un stator et deux rotors

44.

Interlayer pre-cooling apparatus for sand mold freezing printing

      
Numéro d'application 17918347
Numéro de brevet 11660662
Statut Délivré - en vigueur
Date de dépôt 2022-06-15
Date de la première publication 2023-04-20
Date d'octroi 2023-05-30
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Shan, Zhongde
  • Yang, Haoqin
  • Shi, Jianpei

Abrégé

An interlayer pre-cooling apparatus for a sand mold freezing printing includes a sand paving apparatus. The sand paving apparatus is located above a negative-pressure low-temperature forming chamber, and the sand paving apparatus includes several independent sand paving grooves, a hollow sand paving roller, a cooling chamber, a sand scraping plate, and an openable and closable baffle. The openable and closable baffle is rotationally arranged at a discharge port of each sand paving apparatus, and the openable and closable baffle is used for paving low temperature premixed sand on demand. The premixed molding sand is further cooled during the process of scraping and compacting low-temperature molding sand. When the apparatus is adopted for sand mold freezing 3D printing, the low temperature of the premixed molding sand is precisely controllable, which has great significance for realizing interlayer pre-cooling of the sand mold freezing printing.

Classes IPC  ?

  • B22C 9/02 - Moules en sable ou moules analogues pour pièces coulées
  • B33Y 30/00 - Appareils pour la fabrication additive; Leurs parties constitutives ou accessoires à cet effet
  • B28B 1/00 - Fabrication d'objets façonnés à partir du matériau
  • B33Y 40/00 - Opérations ou équipements auxiliaires, p.ex. pour la manipulation de matériau

45.

High-torque and high-precision ultrasonic motor with self-protection function and implementation mode thereof

      
Numéro d'application 17863907
Numéro de brevet 11764705
Statut Délivré - en vigueur
Date de dépôt 2022-07-13
Date de la première publication 2023-04-13
Date d'octroi 2023-09-19
Propriétaire
  • NUAA Super Control Technology Co., Ltd. (Chine)
  • Nanjing University of Aeronautics and Astronautics (Chine)
Inventeur(s)
  • Yang, Lin
  • Yang, Mojian
  • Zhao, Chunsheng

Abrégé

A high-torque and high-precision ultrasonic motor with a self-protection function and an implementation mode of the high-torque and high-precision ultrasonic motor are provided. In the device, a gasket encloses an output shaft of an ultrasonic motor body. A harmonic reducer encloses a shell of the ultrasonic motor body. A motor shaft penetrates through the ultrasonic motor body. The end, close to the motor shaft, of the ultrasonic motor body is defined as a top end, and the bottom end of the motor shaft is sequentially enclosed with an encoder support and a high-precision encoder assembly. The gasket, the harmonic reducer, the encoder support and the high-precision encoder assembly are sequentially arranged from the ultrasonic motor body to the bottom end of the motor shaft. After the ultrasonic motor body decelerates and increases torque, the motor shaft outputs rotating speed and torque.

Classes IPC  ?

  • H02N 2/12 - Machines électriques en général utilisant l'effet piézo-électrique, l'électrostriction ou la magnétostriction produisant un mouvement rotatif, p.ex. moteurs rotatifs - Détails de structure
  • H02N 2/00 - Machines électriques en général utilisant l'effet piézo-électrique, l'électrostriction ou la magnétostriction
  • H02N 2/14 - Circuits d'entraînement; Dispositions pour la commande
  • H02N 2/16 - Machines électriques en général utilisant l'effet piézo-électrique, l'électrostriction ou la magnétostriction produisant un mouvement rotatif, p.ex. moteurs rotatifs utilisant des ondes progressives

46.

Method for automatically processing structure-reinforcing member of aircraft

      
Numéro d'application 18058845
Numéro de brevet 11787051
Statut Délivré - en vigueur
Date de dépôt 2022-11-25
Date de la première publication 2023-04-06
Date d'octroi 2023-10-17
Propriétaire Nanjing University of Aeronautics and Astronautics (Chine)
Inventeur(s)
  • Wang, Jun
  • Huang, Anyi
  • Yi, Cheng
  • Wei, Zeyong
  • Yan, Hao

Abrégé

A method for automatically processing a structure-reinforcing member of an aircraft, including: (S1) acquiring, by a handheld laser scanner, data of an area to be reinforced of the aircraft; (S2) controlling a robotic arm to automatically grab the reinforcing member for automatic scanning; (S3) setting a cutting path in a computer aided design (CAD) digital model followed by registration with real data to obtain an actual cutting path, and cutting the reinforcing member; (S4) controlling the robotic arm to guide a cut reinforcing member to a scanning area for automatic scanning; and (S5) subjecting point cloud data of the cut reinforcing member and the area to be reinforced to virtual assembly and calculating a machining allowance to determine whether an accuracy requirement is met; if yes, ending a task; otherwise, grinding the reinforcing member automatically, and repeating steps (S4)-(S5).

Classes IPC  ?

47.

METHOD AND DEVICE FOR DETECTING DEFECTS IN AIRCRAFT TEMPLATE

      
Numéro d'application 17981594
Statut En instance
Date de dépôt 2022-11-07
Date de la première publication 2023-03-23
Propriétaire Nanjing University of Aeronautics and Astronautics (Chine)
Inventeur(s)
  • Wang, Jun
  • Huang, Chunliang
  • Li, Hongwei
  • Yang, Jianping

Abrégé

A method for detecting defects of an aircraft template, including: scanning the template; establishing a local coordinate system of a template point cloud; fitting plane parameters of a target local point cloud; acquiring an average of normal vectors of all points; calculating heights of all points; calculating an angle between a normal vector of the sinking point and a normal vector of the template point cloud plane; binarizing a point cloud image of the template; obtaining a 3D digital model of the template; aligning the 3D digital model with a resulting point cloud; and determining whether an actual distance exceeds a preset distance threshold, if not, the template is qualified, otherwise, determining whether the number of points whose actual distance exceeds the preset distance threshold exceeds a preset number threshold; if not, the template is qualified; otherwise, the template is not qualified. A detection device is also provided.

Classes IPC  ?

  • G06F 30/15 - Conception de véhicules, d’aéronefs ou d’embarcations
  • G06F 30/20 - Optimisation, vérification ou simulation de l’objet conçu

48.

THERMAL ANALYSIS METHOD FOR CERAMIC MATRIX COMPOSITE (CMC) TURBINE VANE CONSIDERING MICRO-WOVEN STRUCTURE AND CHANGE OF DIRECTION OF FIBER BUNDLES

      
Numéro d'application 17794608
Statut En instance
Date de dépôt 2021-09-10
Date de la première publication 2023-03-02
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Mao, Junkui
  • Tu, Zecan
  • Zhao, Chenwei
  • Wu, Xinyu
  • Han, Xingsi
  • He, Zhenzong

Abrégé

A thermal analysis method for a ceramic matrix composite (CMC) turbine vane considering a micro-woven structure and a change of direction of fiber bundles: obtaining geometric characteristics of the fiber bundles of the internal woven structure of the CMC; establishing a micro-model of warp yarns and weft yarns of the woven structure and a CMC matrix; constructing a woven structural CMC turbine vane model with a micro-structure periodic width in a vane height direction; assigning an anisotropic thermal conductivity matrix varying with a vane profile; performing meshing; performing finite element calculation of a temperature field; and obtaining calculation results of the temperature field of the woven structural CMC turbine vane model, comparing the calculation results with calculation results based on a homogenization thermal analysis method for an equivalent thermal conductivity for analysis, and extracting and analyzing fluctuation characteristics of the temperature field of the woven structural CMC turbine vane.

Classes IPC  ?

  • G06F 30/15 - Conception de véhicules, d’aéronefs ou d’embarcations
  • G06F 30/23 - Optimisation, vérification ou simulation de l’objet conçu utilisant les méthodes des éléments finis [MEF] ou les méthodes à différences finies [MDF]

49.

RADAR TARGET DETECTION METHOD BASED ON ESTIMATION BEFORE DETECTION

      
Numéro d'application 17732531
Statut En instance
Date de dépôt 2022-04-29
Date de la première publication 2023-02-23
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Jin, Benzhou
  • Shen, Yutong
  • Li, Jianfeng
  • Zhang, Xiaofei
  • Wu, Qihui

Abrégé

The present invention provides a radar target detection method based on estimation before detection (EBD), which comprises: obtaining pre-detect targets (PDTs) based on conventional pulse-Doppler processing and pre-detection; estimating ranges and speeds of PDTs, i.e., performing parameter EBD; establishing a dimension-reduction observation model of a received signal based on PDTs and parameter thereof; reconstructing a target vector in the dimension-reduction observation model based on a sparse recovery algorithm; and designing a generalized likelihood ratio detector based on the reconstruction result for target detection. The method of the present invention can significantly reduce the radar signal processing loss, and the target detector used in the method has the constant false alarm rate (CFAR) property, so that the weak target detection performance can be greatly improved.

Classes IPC  ?

  • G01S 13/50 - Systèmes de mesure basés sur le mouvement relatif à la cible
  • G01S 13/58 - Systèmes de détermination de la vitesse ou de la trajectoire; Systèmes de détermination du sens d'un mouvement

50.

Graded lattice energy-absorbing structure, chiral cell thereof having programmable stiffness, and 3D printing method

      
Numéro d'application 17796919
Numéro de brevet 11731389
Statut Délivré - en vigueur
Date de dépôt 2021-08-25
Date de la première publication 2023-02-23
Date d'octroi 2023-08-22
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Gu, Dongdong
  • Gao, Jie
  • Ma, Chenglong
  • Song, Yingjie
  • Chen, Wei

Abrégé

A chiral cell includes a cell structure. The cell structure includes an upper ring, a middle ring, a lower ring, upper connecting rods, and lower connecting rods. The upper ring and the lower ring have the same geometrical shape, and the middle ring is located between the upper ring and the lower ring. A plurality of upper connecting rods is provided; the two ends of each upper connecting rod are respectively correspondingly connected to the upper ring and the middle ring and the upper connecting rods are obliquely and uniformly distributed between the upper ring and the middle ring; a plurality of lower connecting rods is provided; the two ends of each lower connecting rod are respectively correspondingly connected to the lower ring and the middle ring and the lower connecting rods are obliquely and uniformly distributed between the lower ring and the middle ring.

Classes IPC  ?

  • B32B 3/20 - Produits stratifiés caractérisés essentiellement par le fait qu'une des couches comporte des discontinuités ou des rugosités externes ou internes, ou bien qu'une des couches est de forme générale non plane; Produits stratifiés caractérisés essentiellement par des particularismes de forme caractérisés par une couche discontinue, c. à d. soit continue et percée de trous, soit réellement constituée d'éléments individuels caractérisés par une couche interne formée d'éléments individuels de pièces comportant des rainures ou des cavités
  • B32B 3/14 - Produits stratifiés caractérisés essentiellement par le fait qu'une des couches comporte des discontinuités ou des rugosités externes ou internes, ou bien qu'une des couches est de forme générale non plane; Produits stratifiés caractérisés essentiellement par des particularismes de forme caractérisés par une couche discontinue, c. à d. soit continue et percée de trous, soit réellement constituée d'éléments individuels caractérisés par une couche de surface formée d'éléments individuels
  • B32B 15/01 - Produits stratifiés composés essentiellement de métal toutes les couches étant composées exclusivement de métal
  • B33Y 10/00 - Procédés de fabrication additive

51.

SUSPENDING RELEASE DEVICE FOR OBSERVING DROP VIBRATION ATTITUDE CHANGES OF LANDER AND TEST METHOD

      
Numéro d'application 17632575
Statut En instance
Date de dépôt 2021-03-10
Date de la première publication 2023-02-23
Propriétaire Nanjing University of Aeronautics and Astronautics (Chine)
Inventeur(s)
  • Jia, Shan
  • Zhao, Jianhua
  • Chen, Jinbao
  • Zhou, Xianghua
  • Zhang, Sheng

Abrégé

A suspending release device for observing a drop vibration attitude change of a lander and a test method are provided. The device includes a bench system, a lifting system fixed to the bench system, a horizontal frame system, an attitude control system, and a suspending release system hinged to the attitude control system. The horizontal frame system may slide vertically on the bench system and may drive the attitude control system to slide horizontally. A test lander is fixed to a release sliding block. The release sliding block is locked with a main load bearing block. An attitude of the test lander when releasing is adjusted. The horizontal frame system is lifted to a predetermined height. Guide rods are indirectly driven to release the sliding block by a motor. The whole lander falls freely and touches the ground to collide, and the process is recorded by a high-speed camera.

Classes IPC  ?

  • B64G 1/24 - Appareils de guidage ou de commande, p.ex. de commande d'assiette
  • B64G 1/10 - Satellites artificiels; Systèmes de tels satellites; Véhicules interplanétaires
  • B64G 1/36 - Appareils de guidage ou de commande, p.ex. de commande d'assiette par des capteurs, p.ex. par des capteurs solaires, des capteurs d'horizon
  • B64G 1/64 - Systèmes pour réunir ou séparer des véhicules spatiaux ou des parties de ceux-ci, p.ex. aménagement pour l'accostage ou l'amarrage

52.

DEVICE AND METHOD FOR TESTING FRACTURE TOUGHNESS OF SOLID-ICE INTERFACE ON SURFACE OF COATING MATERIAL IN LARGE-SCALE FREEZING STATUS

      
Numéro d'application 17790560
Statut En instance
Date de dépôt 2020-04-17
Date de la première publication 2023-02-02
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Shen, Yizhou
  • Tao, Jie
  • Zeng, Chaojiao
  • Xie, Xinyu

Abrégé

A device and method for testing fracture toughness of a solid-ice interface on a surface of coating material in a large-scale freezing status are provided. The method uses the principle of single-cantilever beam loading, and utilizes the bending stress of a metal substrate to induce the generation and extension of micro-cracks at the solid-ice interface, which are intended to observe the fracture behavior at the interface between the surface of a coating material with metal as a substrate and the ice layer, so as to obtain the fracture toughness at the interface between the ice layer and the surface of the substrate.

Classes IPC  ?

  • G01N 19/04 - Mesure de la force d'adhérence entre matériaux, p.ex. du ruban adhésif, d'un revêtement

53.

Pulse dynamic electrochemical machining apparatus and method for rapidly leveling surface of revolving part

      
Numéro d'application 17872459
Numéro de brevet 11759876
Statut Délivré - en vigueur
Date de dépôt 2022-07-25
Date de la première publication 2023-02-02
Date d'octroi 2023-09-19
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Wang, Dengyong
  • Cui, Guowei
  • Zhu, Zengwei
  • Zhu, Di

Abrégé

The invention relates to the technical field of electrochemical machining and provides a pulse dynamic electrochemical machining apparatus and method for rapidly leveling a surface of a revolving part. During rotating pulse dynamic electrochemical machining, a cathode tool rotates around a center point of the cathode tool at a constant angular velocity, and an anode workpiece rotates around a center point of the anode workpiece at the constant angular velocity; meanwhile, the cathode tool performs a feed movement at a set feed velocity along a center line of the cathode tool and the anode workpiece. A control system determines a machining voltage value output by a power source when each contour point of the anode workpiece rotates to a machining area to automatically change an applied voltage between the cathode tool and the anode workpiece.

Classes IPC  ?

  • B23H 3/02 - Circuits électriques spécialement adaptés à cet effet, p.ex. alimentation, commande, prévention des courts-circuits
  • B23H 3/04 - Electrodes spécialement adaptées à cet effet ou leur fabrication

54.

High-temperature biaxial strength tester for ceramic matrix composite (CMC) turbine vane and test method thereof

      
Numéro d'application 17875447
Numéro de brevet 11644382
Statut Délivré - en vigueur
Date de dépôt 2022-07-28
Date de la première publication 2023-02-02
Date d'octroi 2023-05-09
Propriétaire Nanjing University of Aeronautics and Astronautics (Chine)
Inventeur(s)
  • Gao, Xiguang
  • Yu, Guoqiang
  • Song, Yingdong
  • Song, Fangxiao
  • Xie, Chuyang
  • Jia, Yunfa
  • Du, Jinkang

Abrégé

A high-temperature biaxial strength tester for a CMC turbine vane includes a test stand, a thermal insulation box, a vane fixture, a biaxial loading device, thermocouples, a multi-channel thermometer, quartz lamps, a digital image correlation (DIC) system, and a cooling circulation system. The biaxial loading device includes two loading mechanisms arranged at 90° to each other. Each of the two loading mechanisms includes an electric cylinder and a ceramic push rod. One end of the ceramic push rod is connected to the electric cylinder, and the other end of the ceramic push rod extends into the thermal insulation box to contact an outer platform of the CMC turbine vane. The electric cylinder is provided with a load-displacement sensor. The thermocouples are arranged on the thermal insulation box. The quartz lamps are arranged inside the thermal insulation box. The multi-channel thermometer is connected to the thermocouples.

Classes IPC  ?

  • G01K 13/00 - Thermomètres spécialement adaptés à des fins spécifiques
  • G01M 13/00 - Test des pièces de machines
  • G01K 13/02 - Thermomètres spécialement adaptés à des fins spécifiques pour mesurer la température de fluides en mouvement ou de matériaux granulaires capables de s'écouler

55.

Unmanned aerial vehicle (UAV) task cooperation method based on overlapping coalition formation (OCF) game

      
Numéro d'application 17579610
Numéro de brevet 11567512
Statut Délivré - en vigueur
Date de dépôt 2022-01-20
Date de la première publication 2023-01-31
Date d'octroi 2023-01-31
Propriétaire Nanjing University of Aeronautics and Astronautics (Chine)
Inventeur(s)
  • Qi, Nan
  • Huang, Zanqi
  • Ye, Diliao
  • Jia, Luliang
  • Su, Yueyue
  • Wang, Kewei
  • Wang, Wei
  • Liu, Yijia

Abrégé

An unmanned aerial vehicle (UAV) task cooperation method based on an overlapping coalition formation (OCF) game includes: constructing a sequential OCF game model for a UAV multi-task cooperation problem; using a bilateral mutual benefit transfer (BMBT) order that is biased toward the utility of a whole coalition to evaluate a preference of a UAV for a coalitional structure; optimizing task resource allocation of the UAV under an overlapping coalitional structure by using a preference gravity-guided Tabu Search algorithm to form a stable coalitional structure; and optimizing a transmission strategy based on the current coalitional structure, an updated status of a task resource allocation scheme of the UAV, and a current fading environment, so as to maximize task execution utility of a UAV network. The method quantifies characteristics of resource properties of the UAV and a task, and optimizes the task resource allocation of the UAV under the overlapping coalitional structure.

Classes IPC  ?

  • B64C 39/02 - Aéronefs non prévus ailleurs caractérisés par un emploi spécial
  • G05D 1/10 - Commande de la position ou du cap dans les trois dimensions simultanément
  • H04B 7/185 - Stations spatiales ou aériennes

56.

Flexible Automatic Clamping Device and Method for Backside Laser Penetration Welding of T-shaped Structure

      
Numéro d'application 17868877
Statut En instance
Date de dépôt 2022-07-20
Date de la première publication 2023-01-26
Propriétaire Nanjing University of Aeronautics and Astronautics (Chine)
Inventeur(s)
  • Zhan, Xiaohong
  • Kang, Xufeng
  • Yan, Tingyan
  • Wang, Leilei
  • Hu, Danna

Abrégé

The disclosure relates to a flexible automatic clamping device and method for backside laser penetration welding of a T-shaped structure. The flexible automatic clamping device includes a clamping system, a ranging system and a control system. The ranging system outputs a position instruction to the control system, the control system outputs a movement instruction to the clamping system, so as to adjust the clamping system to an optimal position, then a stringer pressing plate fastens a stringer by means of a Y-shaped connecting rod, and a skin pressing plate fastens skin by means of a skin connecting rod. Based on the flexible automatic clamping device, the method includes prewelding clamping, backside laser penetration welding and postwelding shape retention. The disclosure implements accurate positioning, automatic clamping, backside laser penetration welding and postwelding shape retention of a T-shaped skin-stringer structure.

Classes IPC  ?

  • B23K 37/04 - Dispositifs ou procédés auxiliaires non spécialement adaptés à un procédé couvert par un seul des autres groupes principaux de la présente sous-classe pour maintenir ou mettre en position les pièces
  • B23K 26/21 - Assemblage par soudage

57.

INTERNAL-PARALLEL INLET WITH MODE CONVERSION COMBINED WITH VARIABLE GEOMETRY ADJUSTMENT

      
Numéro d'application 17784671
Statut En instance
Date de dépôt 2020-08-26
Date de la première publication 2023-01-12
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Zhang, Yue
  • Tan, Huijun
  • Wang, Chao
  • Li, Chao
  • Chen, Liang

Abrégé

The present invention discloses an internal-parallel inlet with mode conversion combined with variable geometry adjustment, which comprises a high-speed channel, a low-speed channel, a mode conversion component, a variable geometry component and a motor actuating component. When the inlet is in a low-speed mode, the variable geometry component adjusts the throat area and the internal contraction ratio of the inlet. When the flight Mach number is in a range of the mode conversion Mach number, the mode conversion component and the variable geometry component work simultaneously. When the inlet is in a high-speed mode, the mode conversion component is combined with the variable geometry component to adjust the throat area and the internal contraction ratio of the inlet. The present invention also provides a method for controlling the inlet.

Classes IPC  ?

  • F02C 7/042 - Entrées d'air pour ensembles fonctionnels de turbines à gaz ou de propulsion par réaction à géométrie variable
  • F02C 7/057 - Commande ou régulation
  • B64D 33/02 - Aménagement sur les aéronefs des éléments ou des auxiliaires des ensembles fonctionnels de propulsion, non prévu ailleurs des entrées d'air de combustion

58.

Joint link-level and network-level intelligent system and method for dynamic spectrum anti-jamming

      
Numéro d'application 17901871
Numéro de brevet 11777636
Statut Délivré - en vigueur
Date de dépôt 2022-09-02
Date de la première publication 2022-12-29
Date d'octroi 2023-10-03
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Qi, Nan
  • Jia, Luliang
  • Ye, Diliao
  • Wu, Qihui
  • Li, Xiaojie
  • Liu, Yijia
  • Wang, Wei

Abrégé

A joint link-level and network-level intelligent system and method for dynamic spectrum anti-jamming are provided. The system includes a link-level anti-jamming subsystem and a network-level anti-jamming subsystem. The link-level anti-jamming subsystem sets a reward value as system transmission throughput in a single decision cycle, and a user makes an intelligent frequency usage decision based on the obtained reward value to skip a frequency band in which jamming exists. The network-level anti-jamming subsystem performs reasonable frequency band allocation and management for lower-level sub-users when link-level anti-jamming fails to further enhance a frequency domain anti-jamming capability of the entire system. The users make intelligent frequency usage decisions through a dynamic spectrum anti-jamming algorithm based on reinforcement learning to effectively avoid external malicious jamming, realize dynamic spectrum access, and enhance a frequency domain anti-jamming capability of the system.

Classes IPC  ?

  • H04K 3/00 - Brouillage de la communication; Contre-mesures

59.

METHOD FOR PRECISION FORMING BY CONTINUOUS FREE BENDING

      
Numéro d'application 17766190
Statut En instance
Date de dépôt 2020-01-07
Date de la première publication 2022-12-01
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Guo, Xunzhong
  • Tao, Jie
  • Cheng, Cheng
  • Liu, Chunmei
  • Wang, Hui
  • Wei, Wenbin

Abrégé

A method for precision forming by continuous free bending starts with establishing a correlation equation of a continuous axis f(x) to a bending radius R and determining a bending radius R at a real-time location in the axis. Based on the free bending technique, the method further involves establishing a correlation model of a real-time bending radius R of a tube to an eccentric distance U of a bending die and hence correlations of the equation of the axis to free bending parameters, and constructing a complete correlation model among f(x), R, U, and t based on a relational equation of an eccentric distance U to movement time t of the bending die to enable the precision forming of a complex component by continuous bending. Accordingly, the production efficiency can be improved.

Classes IPC  ?

  • B21D 11/02 - Cintrage par étirage ou par allongement par traction sur une matrice

60.

NEURAL NETWORK-BASED NARMA-L2 MULTIVARIABLE CONTROL METHOD

      
Numéro d'application 17630527
Statut En instance
Date de dépôt 2021-05-24
Date de la première publication 2022-11-24
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Huang, Jinquan
  • Tang, Jie
  • Lu, Feng
  • Chou, Xiaojie
  • Gao, Yahui
  • Qin, Haiqin

Abrégé

The present invention discloses a neural network-based NARMA-L2 multivariable control method, which includes: deriving a NARMA-L2 multivariable control law of a nonlinear discrete system; using neural networks to offline identify nonlinear functions in the control law; designing the controller with the control law, designing a closed-loop control system for a certain type of turbofan engine, and adding the function of making the online update of neural network errors on the basis of this to correct the controller parameters, and studying the tracking performance of the control system. Aimed to minimize the quadratic performance index for the errors of the engine's high-pressure rotating speed and pressure ratio, by using neural networks in combination with the deduced NARMA-L2 multivariable control law, the present invention has designed a dual-variable controller, calculated the engine's control variables and controlled the fuel flow of the engine and the critical interface area of the exhaust nozzle.

Classes IPC  ?

  • G06F 17/11 - Opérations mathématiques complexes pour la résolution d'équations
  • G06F 17/16 - Calcul de matrice ou de vecteur

61.

Labyrinth sealing device for reducing gas intrusion

      
Numéro d'application 17615114
Numéro de brevet 11543034
Statut Délivré - en vigueur
Date de dépôt 2020-09-27
Date de la première publication 2022-11-03
Date d'octroi 2023-01-03
Propriétaire Nanjing University of Aeronautics and Astronautics (Chine)
Inventeur(s)
  • Zhang, Bo
  • Chen, Yuanxiang
  • Wang, Zhiguo
  • Ji, Honghu

Abrégé

A labyrinth sealing device for reducing gas intrusion is provided. A sealing bush is provided with a jet hole at the front of a tooth tip gap. The jet hole faces a tip of a corresponding sealing tooth. A gas flow injected by the jet hole suppresses hot gas flowing into the tooth tip gap. The sealing bush is provided with a first intercepting member at the rear of the tooth tip gap, and the sealing tooth is provided with a second intercepting member at the rear of the tooth tip gap. The first intercepting member hinders hot gas flowing against an inner wall of the sealing bush, and the second intercepting member hinders hot gas flowing against the sealing tooth, such that a part of the hot gas flows in a reverse direction and is violently mixed with subsequent hot gas.

Classes IPC  ?

62.

Active folding wind turbine capable of resisting severe typhoons

      
Numéro d'application 17274193
Numéro de brevet 11773820
Statut Délivré - en vigueur
Date de dépôt 2020-07-09
Date de la première publication 2022-09-29
Date d'octroi 2023-10-03
Propriétaire Nanjing University of Aeronautics and Astronautics (Chine)
Inventeur(s)
  • Ke, Shitang
  • Yang, Jie
  • Wang, Shuo
  • Wang, Hao
  • Wu, Hongxin
  • Du, Lin
  • Han, Guangquan

Abrégé

An active folding wind turbine capable of resisting severe typhoons is provided. Each wind turbine blade includes an upper blade part and a lower blade part that are hinged to each other by a hinge device. A motor transmission system is installed in the lower blade part, is connected to the hinge device in a transmission manner, and can drive the upper blade part to rotate relative to the lower blade part through the hinge device, so that the wind turbine blade is bent. When the upper blade part rotates to an end of a travel, a blade tip of the upper blade part is propped against an upper end of the lower blade part of an adjacent wind turbine blade. A winch is built in an upper portion of the lower blade part of the wind turbine blade, and is provided with a cable.

Classes IPC  ?

  • F03D 1/06 - Rotors
  • F03D 15/00 - Transmission de l’énergie mécanique
  • F03D 80/00 - MÉCANISMES MOTEURS À VENT - Détails, composants ou accessoires non prévus dans les groupes

63.

OPTIMIZED DESIGNING METHOD FOR LAMINATE PREFORM OF CERAMIC MATRIX COMPOSITE

      
Numéro d'application 17603281
Statut En instance
Date de dépôt 2021-07-08
Date de la première publication 2022-09-29
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Gao, Xiguang
  • Liu, Chenyang
  • Song, Yingdong
  • Zhang, Sheng
  • Dong, Hongnian
  • Yu, Guoqiang
  • Dong, Chengqian
  • You, Chao
  • Zhang, Lu

Abrégé

The present disclosure provides an optimized designing method for a laminate preform of a ceramic matrix composite e. With overall consideration of a strength requirement of a component, a geometric shape and properties of the laminate preform, the method includes: optimizing, based on a corresponding mechanical formula, a fiber volume fraction of each laminate constituting the preform and a fiber direction in the laminate, and selecting a preferred microscopic structure for each laminate, thereby taking full advantage of material performance. The method is applicable for optimized design of various components of the ceramic matrix composite.

Classes IPC  ?

  • G06F 30/23 - Optimisation, vérification ou simulation de l’objet conçu utilisant les méthodes des éléments finis [MEF] ou les méthodes à différences finies [MDF]

64.

METHOD FOR ENGINE PERFORMANCE DEGRADATION PREDICTION BASED ON THE EC-RBELM ALGORITHM

      
Numéro d'application 17610159
Statut En instance
Date de dépôt 2021-05-13
Date de la première publication 2022-09-22
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Lu, Feng
  • Zhao, Shuai
  • Huang, Jinquan
  • Cai, Jianbing
  • Wang, Zhaoguang
  • Zhang, Shugang

Abrégé

A method for engine performance degradation prediction based on the EC-RBELM algorithm, including establishing a prediction model cluster for three performance parameters, i.e., gas turbine speed Ng, power turbine inlet temperature T45 and specific fuel consumption SFC, in different atmospheric environments based on the EC-RBELM algorithm; learning EC-RBELM network topology parameters offline and automatically updating EC-RBELM network topology parameters based on prediction errors; and predicting the degradation of individual performance parameters of the turboshaft engine in different atmospheric environments according to the EC-RBELM algorithm model.

Classes IPC  ?

  • G06N 3/08 - Méthodes d'apprentissage
  • G06N 3/04 - Architecture, p.ex. topologie d'interconnexion

65.

Electric Truck Steer-by-Wire System and Network Uncertainty Control Method Therefor

      
Numéro d'application 17636006
Statut En instance
Date de dépôt 2020-05-14
Date de la première publication 2022-09-15
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Zhao, Wanzhong
  • Luan, Zhongkai
  • Zhou, Xiaochuan
  • Wang, Chunyan

Abrégé

An electric truck steer-by-wire system and a net-work uncertainty control method therefor. Said system comprises: a master control electric power module (14), a slave control electric power module (18), a road-sensing motor module (4), a steering wheel (1), an upper steering column (3), a lower steering column(10), a rack and pinion steering mechanism (12), wheels (13), a first steering angle sensor (2), a second steering angle sensor (11),a steering domain controller (8), and a vehicle-mounted CAN network (9). By means of the design of the master and slave controllers and actuating mechanisms, the system combines the advantages of steering angle tracking, torque tracking and current tracking, there-by satisfying the steering response requirements and power requirements of the electric truck, and further enhancing the robustness and fault-tolerant performance of the system under a random network time lag.

Classes IPC  ?

  • B62D 5/00 - Direction assistée ou à relais de puissance
  • B60W 40/10 - Calcul ou estimation des paramètres de fonctionnement pour les systèmes d'aide à la conduite de véhicules routiers qui ne sont pas liés à la commande d'un sous-ensemble particulier liés au mouvement du véhicule

66.

Dynamic Progressive Failure Analysis Method For Composite Multi-Scale Model

      
Numéro d'application 17595100
Statut En instance
Date de dépôt 2020-07-16
Date de la première publication 2022-09-08
Propriétaire Nanjing University Of Aeronautics And Astronautics (Chine)
Inventeur(s)
  • Qi, Zhenchao
  • Liu, Yong
  • Wang, Xingxing
  • Chen, Wenliang
  • Xiao, Yexin
  • Qi, Zhenchao
  • Yao, Chenxi
  • Li, Fengchen
  • Zhang, Ziqin

Abrégé

This patent studies a scale-span modeling method to simulate the structural mechanical responses and dynamic progressive failure behaviors of carbon fiber reinforced plastics (CFRPs) in drilling. Firstly, considering the different mechanical behaviors of fiber and matrix in micro state, a three-dimensional multi-scale dynamic progressive damage evolution model based on micro failure theory is proposed. Based on the degradation elastic parameters of microcomponent in typical volume element model, a new damage evolution model of fiber and resin matrix and an auxiliary deletion criterion of failure element are proposed. Secondly, the relationship between the macro stress and the micro stress of representative volume element in the composite model is established by using the stress amplification factor. Combined with the bilinear cohesion element model, the damage behavior of the composite in and between layers under the cutting action of dagger drill is simulated.

Classes IPC  ?

  • G06F 30/17 - Conception mécanique paramétrique ou variationnelle
  • G01N 3/06 - Adaptations particulières des moyens d'indication ou d'enregistrement
  • B32B 15/08 - Produits stratifiés composés essentiellement de métal comprenant un métal comme seul composant ou comme composant principal d'une couche adjacente à une autre couche d'une substance spécifique de résine synthétique

67.

STRUCTURAL INTEGRATED DESIGN METHOD FOR CERAMIC MATRIX COMPOSITE BOLT PREFORM

      
Numéro d'application 17625772
Statut En instance
Date de dépôt 2020-07-10
Date de la première publication 2022-09-01
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Song, Yingdong
  • Gao, Xiguang
  • Yu, Guoqiang
  • Zhu, Baocheng
  • Zhang, Sheng
  • Dong, Hongnian

Abrégé

A structural integration design method for a ceramic matrix composite bolt preform is provided, which includes: preform modeling; structure modeling; deformation and failure calculation. The method builds different small composites inside the bolt according to actual mesostructures of the ceramic matrix composites, which can realize structurally macroscopic failures caused by mesoscopic failures inside the small composites. The screw threads that are built by the method can reflect a failure form of thread teeth, and the influence of complex stress conditions of the screw threads on the failure form of the screw fracture is also considered, which improves the prediction accuracy of the strength of the ceramic matrix composite bolt. The method builds a structure integrated model, which has a certain structure, for a ceramic matrix composite preform according to the actual size and shape of the structure. The model can have high accuracy, accurately reflect various components of the material, and give macroscopic and mesoscopic structural parameters, so as to facilitate the machining of preparation personnel.

Classes IPC  ?

  • G06F 30/17 - Conception mécanique paramétrique ou variationnelle

68.

Equivalent acceleration method of creep loads based on consistent failure mode

      
Numéro d'application 17743369
Numéro de brevet 11965861
Statut Délivré - en vigueur
Date de dépôt 2022-05-12
Date de la première publication 2022-08-25
Date d'octroi 2024-04-23
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Sun, Zhigang
  • Zhao, Xu
  • Song, Yingdong
  • Niu, Xuming
  • Chang, Yaning
  • Peng, Qiuhong

Abrégé

Disclosed is an equivalent acceleration method of creep loads based on a consistent failure mode. The equivalent acceleration method includes obtaining corresponding tensile strengths; obtaining corresponding creep rupture time; establishing rupture time law, minimum creep rate law and rupture strain law; calculating the value of parameter p in creep damage accumulation model; and dividing the failure mode consistency interval of creep load under variable temperature and variable load. The damage caused by the creep load in the failure mode consistency interval is calculated by using the multi-grade variable temperature and variable load creep nonlinear damage accumulation model, the damage is accelerated to the maximum creep load state in the failure mode consistency interval according to the principle of damage equivalence, and finally the equivalent acceleration of creep load is realized.

Classes IPC  ?

  • G01N 3/18 - Exécution de tests à des températures élevées ou basses
  • G01N 3/02 - Recherche des propriétés mécaniques des matériaux solides par application d'une contrainte mécanique - Parties constitutives
  • G01N 3/36 - Recherche des propriétés mécaniques des matériaux solides par application d'une contrainte mécanique en appliquant des efforts répétés ou pulsatoires engendrés par des moyens pneumatiques ou hydrauliques

69.

METHOD FOR MEASURING DISTANCE BETWEEN TRACE LINES OF THREE-DIMENSIONAL BRAIDED MATERIAL

      
Numéro d'application 17701753
Statut En instance
Date de dépôt 2022-03-23
Date de la première publication 2022-08-18
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Wang, Jun
  • Shan, Zhongde
  • Li, Dawei
  • Dai, Li

Abrégé

A method for measuring a distance between trace lines of a 3D braided material, including: (S1) establishing a vision data acquisition system using a vision sensor; (S2) acquiring, by the vision data acquisition system, a training data of the trace lines of the 3D braided material; (S3) constructing a deep learning model for recognizing the trace lines of the 3D braided material; and inputting the training data acquired in step (S2) to the deep learning model to obtain a trained deep learning model; and (S4) positioning a location of the trace lines of the 3D braided material in batch images according to the trained deep learning model obtained in step (S3); and measuring a distance between adjacent trace lines.

Classes IPC  ?

  • G06T 7/00 - Analyse d'image
  • G06F 30/27 - Optimisation, vérification ou simulation de l’objet conçu utilisant l’apprentissage automatique, p.ex. l’intelligence artificielle, les réseaux neuronaux, les machines à support de vecteur [MSV] ou l’apprentissage d’un modèle
  • G06V 10/774 - Dispositions pour la reconnaissance ou la compréhension d’images ou de vidéos utilisant la reconnaissance de formes ou l’apprentissage automatique utilisant l’intégration et la réduction de données, p.ex. analyse en composantes principales [PCA] ou analyse en composantes indépendantes [ ICA] ou cartes auto-organisatrices [SOM]; Séparation aveugle de source méthodes de Bootstrap, p.ex. "bagging” ou “boosting”
  • H04N 5/232 - Dispositifs pour la commande des caméras de télévision, p.ex. commande à distance
  • H04N 5/247 - Disposition des caméras de télévision
  • G06T 7/73 - Détermination de la position ou de l'orientation des objets ou des caméras utilisant des procédés basés sur les caractéristiques
  • G06V 10/82 - Dispositions pour la reconnaissance ou la compréhension d’images ou de vidéos utilisant la reconnaissance de formes ou l’apprentissage automatique utilisant les réseaux neuronaux
  • G06V 20/64 - Objets tridimensionnels
  • G06V 10/77 - Dispositions pour la reconnaissance ou la compréhension d’images ou de vidéos utilisant la reconnaissance de formes ou l’apprentissage automatique utilisant l’intégration et la réduction de données, p.ex. analyse en composantes principales [PCA] ou analyse en composantes indépendantes [ ICA] ou cartes auto-organisatrices [SOM]; Séparation aveugle de source
  • G06V 10/80 - Fusion, c. à d. combinaison des données de diverses sources au niveau du capteur, du prétraitement, de l’extraction des caractéristiques ou de la classification
  • G06V 10/764 - Dispositions pour la reconnaissance ou la compréhension d’images ou de vidéos utilisant la reconnaissance de formes ou l’apprentissage automatique utilisant la classification, p.ex. des objets vidéo

70.

Method for compiling equivalent acceleration spectrum of creep under variable temperatures and loads

      
Numéro d'application 17733853
Numéro de brevet 11650143
Statut Délivré - en vigueur
Date de dépôt 2022-04-29
Date de la première publication 2022-08-18
Date d'octroi 2023-05-16
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Song, Yingdong
  • Zhao, Xu
  • Sun, Zhigang
  • Niu, Xuming
  • Chang, Yaning
  • Peng, Qiuhong

Abrégé

Disclosed is a method for compiling an equivalent acceleration spectrum of creep under variable temperatures and loads. The method includes following steps: respectively carrying out a material high-temperature tensile test, material high-temperature creep tests and creep tests under two-stage variable temperatures and loads, and calculating values of a parameter p in a creep damage accumulation model under two-stage variable temperatures and loads; based on a nonlinear damage accumulation model under multi-stage variable temperatures and loads, calculating a damage D caused by a multi-stage variable temperatures and loads creep load spectrum by utilizing values of parameter p; based on the principle of consistency of damage D, transforming the multi-stage variable temperatures and loads creep load spectrum into an equivalent acceleration spectrum of a first-order maximum creep load, and finally compiling the equivalent acceleration spectrum of creep under variable temperatures and loads.

Classes IPC  ?

  • G01N 3/18 - Exécution de tests à des températures élevées ou basses
  • G01N 3/36 - Recherche des propriétés mécaniques des matériaux solides par application d'une contrainte mécanique en appliquant des efforts répétés ou pulsatoires engendrés par des moyens pneumatiques ou hydrauliques

71.

METHOD FOR CALCULATING FLUID-STRUCTURE INTERACTION RESPONSE OF CERAMIC MATRIX COMPOSITES

      
Numéro d'application 17431412
Statut En instance
Date de dépôt 2020-08-31
Date de la première publication 2022-08-04
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Song, Yingdong
  • Gao, Xiguang
  • Yu, Guoqiang
  • Han, Dong
  • Zhang, Sheng
  • Zhang, Lu
  • You, Chao

Abrégé

Disclosed is a method for calculating a fluid-structure interaction response of ceramic matrix composites (CMCs). The method includes: calculating a stress-strain hysteresis curve under loading and unloading of a CMC unit cell model through a multi-scale method; performing an interpolation to calculate a hysteresis loop response under arbitrary loading and unloading through a hysteresis loop under loading and unloading calculated through the unit cell model, and using the hysteresis loop response as a proxy model for a dynamics calculation of a solid domain of a fluid-structure interaction; and calculating a fluid load on a fluid-structure interaction interface through CFD, writing a program to read the fluid load and map the same to a solid node, reading a displacement of the solid node and mapping the same onto the fluid node, where a fluid domain and the solid domain use the same time step.

Classes IPC  ?

  • G06F 30/28 - Optimisation, vérification ou simulation de l’objet conçu utilisant la dynamique des fluides, p.ex. les équations de Navier-Stokes ou la dynamique des fluides numérique [DFN]
  • G06F 30/23 - Optimisation, vérification ou simulation de l’objet conçu utilisant les méthodes des éléments finis [MEF] ou les méthodes à différences finies [MDF]

72.

ATTACHABLE SELF-RESISTANCE HEATING/SUPER-HYDROPHOBIC INTEGRATED GRADIENT FILM MATERIAL

      
Numéro d'application 17630530
Statut En instance
Date de dépôt 2020-04-17
Date de la première publication 2022-08-04
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Shen, Yizhou
  • Tao, Jie
  • Wang, Zhen
  • Wu, Zhengwei
  • He, Zhaoru

Abrégé

An attachable self-resistance heating/super-hydrophobic integrated gradient film material. The film material is made of an adhesive resin, an electrically and thermally insulative resin, a thermally and electrically conductive filler, and a thermally conductive insulating filler. The adhesive resin and the electrically and thermally insulative resin respectively form an adhesive layer and a base body, and the two are bonded together. The thermally and electrically conductive filler and the thermally conductive insulating filler are respectively added to an intermediate layer and an upper layer of the base body, to divide the base body into three gradient regions from top to bottom, wherein a super-hydrophobic structure is constructed on the surface of the uppermost area.

Classes IPC  ?

  • H05B 3/14 - Eléments chauffants caractérisés par la composition ou la nature des matériaux ou par la disposition du conducteur caractérisés par la composition ou la nature du matériau conducteur le matériau étant non métallique
  • B64D 15/12 - Dégivrage ou antigivre des surfaces externes des aéronefs par chauffage électrique
  • C09J 7/30 - Adhésifs sous forme de films ou de pellicules caractérisés par la composition de l’adhésif
  • C09J 9/02 - Adhésifs conducteurs de l'électricité
  • C09J 7/29 - Matériau stratifié
  • C09J 11/04 - Additifs non macromoléculaires inorganiques

73.

METHOD, DEVICE AND SYSTEM FOR ANALYZING TUNNEL CLEARANCE BASED ON LASER POINT CLOUD

      
Numéro d'application 17719284
Statut En instance
Date de dépôt 2022-04-12
Date de la première publication 2022-07-28
Propriétaire Nanjing University of Aeronautics and Astronautics (Chine)
Inventeur(s)
  • Wang, Jun
  • Wu, Yuxiang
  • Lu, Dening

Abrégé

A point cloud of a tunnel is obtained. The point cloud of the tunnel is subjected to cylinder fitting. A central axis of the tunnel is extracted. A cross section of the tunnel is extracted. Point clouds of two rails are extracted. A base line of a contour of the tunnel clearance is constructed. A center of the cross section of the tunnel is extracted. A point cloud of the cross section of the tunnel is registered with a point cloud of a contour of the tunnel clearance according to a constraint condition. The point cloud of the cross section of the tunnel and the point cloud of the contour of the tunnel clearance after being registered with each other are analyzed to determine whether the tunnel clearance is intruded.

Classes IPC  ?

  • G01S 17/89 - Systèmes lidar, spécialement adaptés pour des applications spécifiques pour la cartographie ou l'imagerie

74.

Global active noise control method for rotorcraft

      
Numéro d'application 17701810
Numéro de brevet 11842716
Statut Délivré - en vigueur
Date de dépôt 2022-03-23
Date de la première publication 2022-07-14
Date d'octroi 2023-12-12
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONUATICS (Chine)
Inventeur(s)
  • Lu, Yang
  • Xu, Xice
  • Shao, Mengxue
  • Chen, Jinru

Abrégé

A global active noise control method for a rotorcraft, including: acquiring the acoustic pressure signal at a measuring point of the rotorcraft; predicting the holographic and global sound field of noise of the rotor; reconstructing the reverse sound field of the noise of the rotor; and performing adaptive sound field adjustment based on the optimal phase search.

Classes IPC  ?

  • G10K 11/178 - Procédés ou dispositifs de protection contre le bruit ou les autres ondes acoustiques ou pour amortir ceux-ci, en général utilisant des effets d'interférence; Masquage du son par régénération électro-acoustique en opposition de phase des ondes acoustiques originales

75.

Automatic circumferential insertion apparatus and method for complex rotary preform

      
Numéro d'application 17707912
Numéro de brevet 11591727
Statut Délivré - en vigueur
Date de dépôt 2022-03-29
Date de la première publication 2022-07-14
Date d'octroi 2023-02-28
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Wang, Jun
  • Shan, Zhongde
  • Ma, Xiaokang
  • Wang, Yaoyao
  • Yang, Haoqin

Abrégé

An automatic circumferential insertion apparatus and method for a complex rotary preform. The apparatus includes a double-hinge yarn carrier and a U-shaped bracket. Two ends of the double-hinge yarn carrier are respectively provided with a cylindrical hinge structure. One cylindrical hinge structure is in revolving pair connection with an outer clamping buckle at one end of the U-shaped bracket, and the other cylindrical hinge structure is in revolving pair connection with an inner clamping buckle at the other end of the U-shaped bracket. Two sides of the U-shaped bracket are provided with an electromagnet, respectively. The outer clamping buckle is provided with a pin, which is controlled by triggering, and is triggered simultaneously with the electromagnet at the side where the outer clamping buckle is arranged.

Classes IPC  ?

  • D04C 3/14 - Porte-bobines
  • D04C 3/48 - Dispositifs auxiliaires
  • D04C 3/24 - Dispositifs pour commander les porte-bobines afin d'obtenir des dessins, p.ex. dispositifs sur guides ou platines
  • B29C 70/24 - Façonnage de matières composites, c. à d. de matières plastiques comprenant des renforcements, des matières de remplissage ou des parties préformées, p.ex. des inserts comprenant uniquement des renforcements, p.ex. matières plastiques auto-renforçantes des renforcements fibreux uniquement caractérisées par la structure des renforcements fibreux utilisant des fibres de grande longueur, ou des fibres continues orientées dans au moins trois directions formant une structure tridimensionnelle

76.

METHOD FOR GENERATING SCANNING PATH OF MACHINING FEATURE SURFACE OF AIRCRAFT PANEL

      
Numéro d'application 17701788
Statut En instance
Date de dépôt 2022-03-23
Date de la première publication 2022-07-07
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Wang, Jun
  • Zhang, Yiming
  • Xu, Yabin

Abrégé

A method for generating a scanning path of a machining feature surface of an aircraft panel, including: acquiring a main direction and a triangular mesh model of the aircraft panel; dividing the triangular mesh model into multiple regions; recognizing the machining feature surface according to the main direction; projecting the machining feature surface to a 2D coordinate system thereof; extracting a 2D scanning path for the machining feature surface; and mapping the 2D scanning path to a 3D space to generate a 3D scanning path.

Classes IPC  ?

  • G06T 17/20 - Description filaire, p.ex. polygonalisation ou tessellation
  • B64C 7/00 - Structures ou carénages non prévus ailleurs

77.

Mechanism for radially inserting yarn into three-dimensional braided preform

      
Numéro d'application 17702145
Numéro de brevet 11661686
Statut Délivré - en vigueur
Date de dépôt 2022-03-23
Date de la première publication 2022-07-07
Date d'octroi 2023-05-30
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Shan, Zhongde
  • Wang, Jun
  • Wang, Yaoyao
  • Yang, Haoqin
  • Li, Chao

Abrégé

A mechanism for radially inserting a yarn into a 3D braided preform, including a first bracket, an upper linear actuator, a support mechanism, an upper yarn insertion device, a yarn carrying device, an upper gear ring, a lower yarn insertion device, a lower linear actuator, a second bracket, a lower gear ring, a lower gear, a lower motor, a lower circular track, an upper circular track, a base, an upper gear, a pneumatic transmission and control device and an upper motor.

Classes IPC  ?

  • D04C 3/48 - Dispositifs auxiliaires
  • D04C 3/40 - Métiers à tresses ou à dentelles pour la fabrication de tresses tubulaires par systèmes d'alimentation des fils tournant autour et à même distance du centre de tressage

78.

INTELLIGENT ANTI-ICING MATERIAL AND PREPARATION METHOD AND USE THEREOF

      
Numéro d'application 17299064
Statut En instance
Date de dépôt 2020-09-23
Date de la première publication 2022-07-07
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Pan, Lei
  • Guo, Huaxin
  • Wang, Fei
  • Pang, Xiaofei
  • Zhong, Lang
  • Yuan, Xiaosa
  • Hu, Jingling

Abrégé

An intelligent anti-icing material and a preparation method and use thereof are disclosed. The intelligent anti-icing material includes a hydrophobic resin and a nickel-titanium alloy wire embedded in the hydrophobic resin. When the surrounding temperature decreases, the hydrophobic resin in the intelligent anti-icing material shrinks, and the nickel-titanium alloy wire featured by thermoelastic martensitic transformation undergoes phase transformation and expands, which changes the direction of the expansion force inside the ice layer, and thus tiny cracks occur at the interface between the ice layer and the surface of the material, thereby reducing the adhesion of the ice layer to the surface of the material, accelerating the spontaneous shedding of the ice layer, without heating, and achieving an excellent anti-icing effect.

Classes IPC  ?

  • C09K 3/18 - Substances non couvertes ailleurs à appliquer sur des surfaces pour y minimiser l'adhérence de la glace, du brouillard ou de l'eau; Substances antigel ou provoquant le dégel pour application sur des surfaces
  • C08K 9/04 - Ingrédients traités par des substances organiques
  • C08K 3/08 - Métaux

79.

DEVICE AND METHOD FOR AUTOMATICALLY DETECTING THROUGH-HOLE RATE OF HONEYCOMB SANDWICH COMPOSITE-BASED ACOUSTIC LINER

      
Numéro d'application 17701763
Statut En instance
Date de dépôt 2022-03-23
Date de la première publication 2022-07-07
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Wang, Jun
  • Shan, Zhongde
  • Tang, Hao
  • Liu, Yuanpeng

Abrégé

A device for automatically detecting a through-hole rate of a honeycomb sandwich composite-based acoustic liner, including a customized tooling, a data acquisition system, a motion mechanism and a data processing system. The data acquisition system is configured to acquire a surface three-dimensional (3D) point cloud data of an acoustic liner using a two-dimensional (2D) laser profile sensor in a manner of parallel movement shooting, and connected with a graphics workstation. The motion mechanism includes an industrial robot, and the 2D laser profile sensor is fixed at an end of the industrial robot. The motion mechanism is configured to support the data acquisition system to perform translational scanning. The data processing system includes the graphics workstation, and plays a role of path planning and data storage. A method for automatically detecting a through-hole rate of a honeycomb sandwich composite-based acoustic liner is also provided.

Classes IPC  ?

  • G01B 11/22 - Dispositions pour la mesure caractérisées par l'utilisation de techniques optiques pour mesurer la profondeur
  • B25J 9/16 - Commandes à programme
  • B25J 13/08 - Commandes pour manipulateurs au moyens de dispositifs sensibles, p.ex. à la vue ou au toucher
  • G01B 11/08 - Dispositions pour la mesure caractérisées par l'utilisation de techniques optiques pour mesurer des diamètres

80.

Three-dimensional model-based coverage path planning method for unmanned aerial vehicles

      
Numéro d'application 17701773
Numéro de brevet 11532125
Statut Délivré - en vigueur
Date de dépôt 2022-03-23
Date de la première publication 2022-07-07
Date d'octroi 2022-12-20
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Wang, Jun
  • Dai, Jiajia

Abrégé

A three-dimensional model-based coverage path planning method for an unmanned aerial vehicle, including determining a size of a view frustum of the unmanned aerial vehicle, and establishing a bounding box of the three-dimensional model; designing a three-dimensional grid map according to the view frustum and the bounding box, and defining an attribute of a grid, and arranging a measurement point of the unmanned aerial vehicle on a surface of the three-dimensional model; and planning an unmanned aerial vehicle measurement path on the surface of the three-dimensional model according to the arrangement of measurement points.

Classes IPC  ?

  • G06T 17/05 - Modèles géographiques
  • G06T 17/10 - Description de volumes, p.ex. de cylindres, de cubes ou utilisant la GSC [géométrie solide constructive]
  • B64C 39/02 - Aéronefs non prévus ailleurs caractérisés par un emploi spécial
  • G05D 1/10 - Commande de la position ou du cap dans les trois dimensions simultanément

81.

HYBRID WOVEN FIBER PREFORM-REINFORCED COMPOSITE MATERIAL AND PREPARATION METHOD THEREOF

      
Numéro d'application 17431206
Statut En instance
Date de dépôt 2021-01-05
Date de la première publication 2022-06-23
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Chen, Zhaofeng
  • Xiao, Qiqiao
  • Miao, Yunliang

Abrégé

The present disclosure discloses a hybrid woven fiber preform-reinforced composite material, including a fiber preform, a composite material interface and a matrix, where the fiber preform is a three-dimensional fabric hybrid woven by 2-5 high-performance inorganic fibers, and the matrix is selected from the group consisting of resin, light alloy, carbon and ceramic. A preparation method of the composite material includes: preparing ceramic slurry, fiber bundle impregnation treatment, fiber weaving, molding of three-dimensional overall structure preform, preform heat treatment, preparing interface and preparing matrix. The present disclosure improves the weaving performance of inorganic rigid fibers, and the prepared hybrid woven fiber preform-reinforced composite material has desirable integrity, high interlayer bonding strength, and is not easy to layer. Meanwhile, the present disclosure realizes the functions of wave transmission, wave-absorbing, high-temperature structural material, thermal insulation and thermal prevention through the combination of hybrid woven fibers.

Classes IPC  ?

  • C04B 35/80 - Fibres, filaments, "whiskers", paillettes ou analogues
  • C04B 35/565 - Produits céramiques mis en forme, caractérisés par leur composition; Compositions céramiques; Traitement de poudres de composés inorganiques préalablement à la fabrication de produits céramiques à base de non oxydes à base de carbures à base de carbure de silicium
  • C04B 35/622 - Procédés de mise en forme; Traitement de poudres de composés inorganiques préalablement à la fabrication de produits céramiques
  • C22C 49/14 - Alliages contenant des fibres ou des filaments métalliques ou non métalliques caractérisés par les fibres ou les filaments
  • C22C 47/12 - Imprégnation ou coulée sous une pression mécanique
  • C22C 47/06 - Prétraitement des fibres ou des filaments par façonnage des fibres ou des filaments en une structure préformée, p.ex. en utilisant un liant temporaire afin de former un élément analogue à un mat
  • C22C 47/04 - Prétraitement des fibres ou des filaments par revêtement, p.ex. avec un recouvrement protecteur ou activé

82.

Method for visualizing large-scale point cloud based on normal

      
Numéro d'application 17574796
Numéro de brevet 11532123
Statut Délivré - en vigueur
Date de dépôt 2022-01-13
Date de la première publication 2022-06-23
Date d'octroi 2022-12-20
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Wang, Jun
  • Li, Zikuan
  • Huang, Anyi
  • Xie, Qian

Abrégé

A method for visualizing a large-scale point cloud based on normal, including: (S1) according to a spatial structure of a point cloud data, constructing a balanced octree structure of a node point cloud; (S2) according to the balanced octree structure and normal information of a point cloud, constructing an octree structure with the normal information; and constructing a normal level-of-detail (LOD) visualization node through downsampling; and (S3) determining a node scheduling strategy according to a relationship between a viewpoint, a viewing frustum and a normal of a render node; and respectively calling a reading thread and a rendering thread to simultaneously perform reading and rendering according to the node scheduling strategy.

Classes IPC  ?

  • G06T 17/00 - Modélisation tridimensionnelle [3D] pour infographie

83.

Method for detecting and recognizing surface defects of automated fiber placement composite based on image converted from point cloud

      
Numéro d'application 17574827
Numéro de brevet 11557029
Statut Délivré - en vigueur
Date de dépôt 2022-01-13
Date de la première publication 2022-06-23
Date d'octroi 2023-01-17
Propriétaire Nanjing University of Aeronautics and Astronautics (Chine)
Inventeur(s)
  • Shan, Zhongde
  • Wang, Jun
  • Huang, Anyi
  • Xie, Qian

Abrégé

A method for detecting and recognizing surface defects of an automated fiber placement composite based on an image converted from point clouds, including: acquiring a surface point cloud of the automated fiber placement composite; fitting a plane to surface point data; calculating a distance from each point of the surface point cloud to a fitted plane; enveloping the surface point cloud by OBB, and generating a grayscale image according to the OBB and the distance; constructing a pre-trained semantic segmentation network for defect of fiber placement, and inputting the grayscale image to segment and recognize defect areas thereon; mapping a segmentation result output by the semantic segmentation network to the point cloud followed by defect evaluation and visualization.

Classes IPC  ?

  • G06T 7/00 - Analyse d'image
  • G06T 7/50 - Récupération de la profondeur ou de la forme
  • G06T 7/11 - Découpage basé sur les zones
  • G06V 10/77 - Dispositions pour la reconnaissance ou la compréhension d’images ou de vidéos utilisant la reconnaissance de formes ou l’apprentissage automatique utilisant l’intégration et la réduction de données, p.ex. analyse en composantes principales [PCA] ou analyse en composantes indépendantes [ ICA] ou cartes auto-organisatrices [SOM]; Séparation aveugle de source
  • G06V 10/774 - Dispositions pour la reconnaissance ou la compréhension d’images ou de vidéos utilisant la reconnaissance de formes ou l’apprentissage automatique utilisant l’intégration et la réduction de données, p.ex. analyse en composantes principales [PCA] ou analyse en composantes indépendantes [ ICA] ou cartes auto-organisatrices [SOM]; Séparation aveugle de source méthodes de Bootstrap, p.ex. "bagging” ou “boosting”
  • G06V 20/70 - RECONNAISSANCE OU COMPRÉHENSION D’IMAGES OU DE VIDÉOS Éléments spécifiques à la scène Étiquetage du contenu de scène, p.ex. en tirant des représentations syntaxiques ou sémantiques
  • G06T 7/30 - Détermination des paramètres de transformation pour l'alignement des images, c. à d. recalage des images
  • G06V 10/776 - Dispositions pour la reconnaissance ou la compréhension d’images ou de vidéos utilisant la reconnaissance de formes ou l’apprentissage automatique utilisant l’intégration et la réduction de données, p.ex. analyse en composantes principales [PCA] ou analyse en composantes indépendantes [ ICA] ou cartes auto-organisatrices [SOM]; Séparation aveugle de source Évaluation des performances
  • G06V 10/25 - Détermination d’une région d’intérêt [ROI] ou d’un volume d’intérêt [VOI]
  • G06V 10/26 - Segmentation de formes dans le champ d’image; Découpage ou fusion d’éléments d’image visant à établir la région de motif, p.ex. techniques de regroupement; Détection d’occlusion

84.

Method for dynamically measuring deformation of rotating-body mold

      
Numéro d'application 17574843
Numéro de brevet 11544837
Statut Délivré - en vigueur
Date de dépôt 2022-01-13
Date de la première publication 2022-06-23
Date d'octroi 2023-01-03
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Shan, Zhongde
  • Wang, Jun
  • Wei, Zhengyuan
  • Chen, Honghua
  • Xie, Qian

Abrégé

A method for dynamically measuring deformation of a rotating-body mold, including: (S1) subjecting an overall outer surface of the rotating-body mold to three-dimensional measurement to acquire an initial point cloud data; (S2) shooting, by a multi-camera system, the mold from different angles to obtain three-dimensional coordinates of marking points and coding points on the overall outer surface of the rotating-body mold; (S3) rotating the mold, and repeatedly photographing the marking points and the coding points on the mold surface under different angle poses; and calculating three-dimensional coordinates of the marking points and the coding points; and (S4) predicting a point cloud data of the outer surface under different angle poses based on a conversion relationship among the marking points to analyze a deformation degree of the mold during a rotation process.

Classes IPC  ?

  • G06K 9/00 - Méthodes ou dispositions pour la lecture ou la reconnaissance de caractères imprimés ou écrits ou pour la reconnaissance de formes, p.ex. d'empreintes digitales
  • G06T 7/00 - Analyse d'image
  • G06T 7/55 - Récupération de la profondeur ou de la forme à partir de plusieurs images
  • G06T 7/70 - Détermination de la position ou de l'orientation des objets ou des caméras
  • G06V 10/74 - Appariement de motifs d’image ou de vidéo; Mesures de proximité dans les espaces de caractéristiques
  • G06V 10/75 - Appariement de motifs d’image ou de vidéo; Mesures de proximité dans les espaces de caractéristiques utilisant l’analyse de contexte; Sélection des dictionnaires
  • G06V 10/24 - Alignement, centrage, détection de l’orientation ou correction de l’image
  • G06V 10/10 - Acquisition d’images
  • G01B 11/16 - Dispositions pour la mesure caractérisées par l'utilisation de techniques optiques pour mesurer la déformation dans un solide, p.ex. indicateur optique de déformation
  • G01B 11/00 - Dispositions pour la mesure caractérisées par l'utilisation de techniques optiques

85.

BRAIN-COMPUTER AIDED ANALYSIS METHOD AND SYSTEM FOR AVIATION ACCIDENT

      
Numéro d'application 17546827
Statut En instance
Date de dépôt 2021-12-09
Date de la première publication 2022-06-16
Propriétaire Nanjing University of Aeronautics and Astronautics (Chine)
Inventeur(s)
  • Zhao, Qijun
  • Zhou, Xu
  • Ren, Binwu
  • Zhang, Xiayang
  • Zhang, Daoqiang
  • Wang, Bo

Abrégé

A brain-computer aided analysis method for an aviation accident is provided. The method includes the steps of obtaining historical electroencephalogram (EEG) signals and historical psychological and physiological features of various pilots during flight to be recorded as first EEG signals and first features; training a feature recognition model by using the first EEG signals as an input and the first features as an output; inputting EEG signals of a pilot of an aviation accident aircraft into the feature recognition model, and outputting psychological and physiological features of the pilot of the aviation accident aircraft to be recorded as second features; determining whether the second features are abnormal or not according to the historical psychological and physiological features of the pilot of the aviation accident aircraft and the first features.

Classes IPC  ?

  • G06F 3/01 - Dispositions d'entrée ou dispositions d'entrée et de sortie combinées pour l'interaction entre l'utilisateur et le calculateur
  • A61B 5/18 - Dispositifs pour l'exécution des tests de capacité pour conducteurs de véhicules
  • A61B 5/00 - Mesure servant à établir un diagnostic ; Identification des individus

86.

FMCW-BASED VR ENVIRONMENT INTERACTION SYSTEM AND METHOD

      
Numéro d'application 17665581
Statut En instance
Date de dépôt 2022-02-06
Date de la première publication 2022-05-26
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Zhao, Yanchao
  • Jiang, Wenhao
  • Li, Si

Abrégé

A frequency modulated continuous wave (FMCW)-based virtual reality (VR) environment interaction system and method are provided. Signal generators (S1, S2, S3) are provided to transmit FMCW signals; a glove is worn on a hand by a user; and multiple signal receiving nodes (H) are provided on the glove and configured to receive the FMCW signals. When the signal receiving nodes (H) receive the FMCW signals, one-dimensional distances are measured by means of FMCW technique; after the distances are measured, positions of the signal receiving nodes (H) in a coordinate system of the signal generators (S1, S2, S3) are calculated; a change in a position of the hand that wears the glove is tracked by means of changes in the positions of the signal receiving nodes (H); and a VR interaction is performed by outputting a change in a coordinate point matrix formed by the signal receiving nodes (H).

Classes IPC  ?

  • G01S 13/34 - Systèmes pour mesurer la distance uniquement utilisant la transmission d'ondes continues, soit modulées en amplitude, en fréquence ou en phase, soit non modulées utilisant la transmission d'ondes continues modulées en fréquence, tout en faisant un hétérodynage du signal reçu, ou d’un signal dérivé, avec un signal généré localement, associé au signal transmis simultanément
  • G01S 13/36 - Systèmes pour mesurer la distance uniquement utilisant la transmission d'ondes continues, soit modulées en amplitude, en fréquence ou en phase, soit non modulées avec comparaison en phase du signal reçu avec le signal transmis au même moment
  • G01S 13/48 - Détermination indirecte des données relatives à la position utilisant des faisceaux multiples à l'émission ou à la réception

87.

MONITORING METHOD FOR VIBRATION DRILLING STATE OF STACK STRUCTURE MATERIAL

      
Numéro d'application 17524463
Statut En instance
Date de dépôt 2021-11-11
Date de la première publication 2022-05-19
Propriétaire Nanjing University of Aeronautics and Astronautics (Chine)
Inventeur(s)
  • Chen, Yan
  • Guo, Nan
  • Yan, Chaoren

Abrégé

A state monitoring method for vibration drilling of a stack structure material is provided. A load power and a torque value of a drilling spindle is monitored during machining. Drilling state are divided according to a machining material of a drill. According to a data of a test library, reference thresholds of two monitoring objects for judging the change of the drilling state are set to achieve the state monitoring for the drilling process. The method monitors the machining process through the monitoring module in the machining system.

Classes IPC  ?

  • B23Q 17/09 - Agencements sur les machines-outils pour indiquer ou mesurer pour indiquer ou mesurer la pression de coupe ou l'état de l'outil de coupe, p.ex. aptitude à la coupe, charge sur l'outil
  • B23Q 15/013 - Commande ou régulation du mouvement d'avance

88.

Drive-by-wire electro-hydraulic steering system based on double-winding motor and hybrid control method

      
Numéro d'application 17258415
Numéro de brevet 11505241
Statut Délivré - en vigueur
Date de dépôt 2020-05-14
Date de la première publication 2022-04-28
Date d'octroi 2022-11-22
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Zhao, Wanzhong
  • Zhou, Xiaochuan
  • Zhou, Changzhi
  • Luan, Zhongkai
  • Liang, Weihe

Abrégé

The present invention discloses a drive-by-wire electro-hydraulic steering system based on a double-winding motor and a hybrid control method. The steering system includes a steering wheel (1), a steering column assembly, a road sense assembly, an electro-hydraulic power-assisted module, a double-winding motor power-assisted module (28), a steering control unit, an electromagnetic clutch (8), a steering tie rod (17), a steering trapezoid (13) and steering wheels (12). The steering system can be switched among various steering work modes according to work conditions of a vehicle, meets steering requirements under various work conditions, uses a work mode that two sets of windings of the double-winding motor work at the same time, and has a motor winding redundancy function. When one set of windings fails, the other set of windings can drive the motor to provide power-assisted torque.

Classes IPC  ?

  • B62D 5/04 - Direction assistée ou à relais de puissance électrique, p.ex. au moyen d'un servomoteur relié au boîtier de direction ou faisant partie de celui-ci
  • B62D 5/00 - Direction assistée ou à relais de puissance
  • B62D 5/06 - Direction assistée ou à relais de puissance à fluide, c. à d. au moyen d'un fluide sous pression produisant toute la force nécessaire, ou la plus grande partie de celle-ci, pour commander la direction du véhicule
  • B62D 5/30 - Dispositifs de sécurité, p.ex. source de puissance ou moyens de transmission auxiliaires pour assurer la direction en cas de défaillance des moyens de direction primaires
  • B62D 15/02 - Indicateurs de direction ou aides de direction

89.

Method for measuring a seam on aircraft skin based on large-scale point cloud

      
Numéro d'application 17169527
Numéro de brevet 11532121
Statut Délivré - en vigueur
Date de dépôt 2021-02-07
Date de la première publication 2022-04-21
Date d'octroi 2022-12-20
Propriétaire Nanjing University of Aeronautics and Astronautics (Chine)
Inventeur(s)
  • Wang, Jun
  • Long, Kun
  • Xie, Qian
  • Lu, Dening

Abrégé

A method for measuring a seam on aircraft skin based on a large-scale point cloud is disclosed. A point cloud density of each point in an aircraft skin point cloud is calculated. Seam and non-seam point clouds are divided according to a discrepancy of the calculated point cloud density. A point is selected from the point cloud of the seam area, and a section at the point is extracted. A certain range of the seam and non-seam point clouds is projected to the section and a projected point cloud is acquired. A calculation model of flush and gap is constructed, and the flush and the gap of the aircraft skin seam at the measuring point is calculated according to the projected point cloud and the calculation model.

Classes IPC  ?

  • G06K 9/00 - Méthodes ou dispositions pour la lecture ou la reconnaissance de caractères imprimés ou écrits ou pour la reconnaissance de formes, p.ex. d'empreintes digitales
  • G06T 17/00 - Modélisation tridimensionnelle [3D] pour infographie
  • G06V 20/00 - RECONNAISSANCE OU COMPRÉHENSION D’IMAGES OU DE VIDÉOS Éléments spécifiques à la scène

90.

METHOD FOR COMPONENT-LEVEL NON-ITERATIVE CONSTRUCTION OF AIRBORNE REAL-TIME MODEL OF VARIABLE-CYCLE ENGINE

      
Numéro d'application 17312396
Statut En instance
Date de dépôt 2021-01-07
Date de la première publication 2022-04-21
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Lu, Feng
  • Li, Zhihu
  • Huang, Jinquan
  • Zhou, Wenxiang
  • Wei, Xunkai

Abrégé

The present invention discloses a method for component-level non-iterative construction of an airborne real-time model of a variable-cycle engine, which is proposed by using an existing nonlinear component-level dynamic general model of a variable-cycle engine in combination with a modeling idea of an aero-engine LPV model. In the original nonlinear component-level general model of the variable-cycle engine, components are connected together through a system of nonlinear co-working equations, and characteristic parameters of the respective components are obtained by iteratively solving the system of nonlinear co-working equations. In such a process of iteratively solving the system of nonlinear equations, much time is taken to operate the model. In the component-level non-iterative method for the variable-cycle engine, an LPV model replaces such a process of iteratively solving the system of nonlinear equations, and can significantly reduce the time taken by and increase the real-time performance of a model of the variable-cycle engine.

Classes IPC  ?

  • G06F 30/17 - Conception mécanique paramétrique ou variationnelle
  • G06F 111/10 - Modélisation numérique

91.

Micron silver particle-reinforced 316L stainless steel matrix composite and preparation method thereof

      
Numéro d'application 17263876
Numéro de brevet 11946122
Statut Délivré - en vigueur
Date de dépôt 2020-07-23
Date de la première publication 2022-04-14
Date d'octroi 2024-04-02
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Gu, Dongdong
  • Lin, Kaijie
  • Quan, Jingfeng
  • Fang, Yamei
  • Ge, Qing
  • Zhuang, Jie
  • Liu, Yang
  • Dong, Weisong
  • Shuai, Pengjiang

Abrégé

3 and a relative density of more than 98%. The composite is prepared by the following method: mixing raw materials of a spherical silver powder and a spherical 316L stainless steel powder; subjecting a resulting mixture to mechanical ball milling to obtain a mixed powder; sieving the mixed powder and adding a resulting powder to a powder cylinder of an SLM forming machine; and charging an inert protective gas for printing to obtain the composite.

Classes IPC  ?

  • C22C 38/00 - Alliages ferreux, p.ex. aciers alliés
  • B22F 1/05 - Poudres métalliques caractérisées par la dimension ou la surface spécifique des particules
  • B22F 1/065 - Particules sphériques
  • B22F 9/04 - Fabrication des poudres métalliques ou de leurs suspensions; Appareils ou dispositifs spécialement adaptés à cet effet par des procédés physiques à partir d'un matériau solide, p.ex. par broyage, meulage ou écrasement à la meule
  • B22F 10/28 - Fusion sur lit de poudre, p.ex. fusion sélective par laser [FSL] ou fusion par faisceau d’électrons [EBM]
  • B22F 10/322 - Commande ou régulation des opérations de l’atmosphère, p.ex. de la composition ou de la pression dans une chambre de fabrication d’un écoulement de gaz, p.ex. du débit ou de la direction
  • B22F 10/36 - Commande ou régulation des opérations des paramètres du faisceau d’énergie
  • B22F 10/366 - Paramètres de balayage, p.ex. distance d’éclosion ou stratégie de balayage
  • B23K 26/00 - Travail par rayon laser, p.ex. soudage, découpage ou perçage 
  • B23K 26/342 - Soudage de rechargement
  • B33Y 10/00 - Procédés de fabrication additive
  • B33Y 70/00 - Matériaux spécialement adaptés à la fabrication additive
  • B23K 103/04 - Alliages d'acier

92.

Steel structure cooling tower

      
Numéro d'application 17267041
Numéro de brevet 11414882
Statut Délivré - en vigueur
Date de dépôt 2020-07-09
Date de la première publication 2022-03-24
Date d'octroi 2022-08-16
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Ke, Shitang
  • Wu, Hongxin
  • Yang, Jie
  • Du, Lin

Abrégé

The present invention provides a steel structure cooling tower, including a truss system, a hyperbolic enclosure plate system and an opening-closing system. Hoop trusses and meridional trusses are connected crisscross to form a force transfer structure of the steel structure cooling tower, thereby improving the overall stability of a tower body of the cooling tower and reducing the wind pressure on the tower body. An enclosure plate is mounted on the hoop truss by an enclosure plate bracket assembly, the opening-closing system is laid on the hoop truss, and a wind and rain sensor is installed on a hoop truss on the top of the tower body of the cooling tower. When typhoon rain exceeds a limiting value, an opening-closing posture of the hyperbolic enclosure plate is adjusted, so that the steel structure cooling tower can open the enclosure plate to reduce a wind load acting on the tower body.

Classes IPC  ?

  • E04H 5/12 - Tours de refroidissement
  • E04H 9/14 - Bâtiments, groupes de bâtiments ou abris conçus pour résister à des situations extérieures anormales, p.ex. à des bombardements, à des séismes ou à des climats extrêmes, ou pour se protéger de ces situations contre d'autres influences dangereuses, p.ex. tornades, crues

93.

Isolation section suppressing shock wave forward transmission structure for wave rotor combustor and wave rotor combustor

      
Numéro d'application 17544315
Numéro de brevet 11585533
Statut Délivré - en vigueur
Date de dépôt 2021-12-07
Date de la première publication 2022-03-24
Date d'octroi 2023-02-21
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Li, Jianzhong
  • Zheng, Renchuan
  • Jin, Wu
  • Qin, Qiongyao
  • Yao, Qian
  • Gong, Erlei

Abrégé

The present invention discloses an isolation section suppressing shock wave forward transmission structure for a wave rotor combustor and a wave rotor combustor, and belongs to the new concept field of unsteady combustion. The isolation section suppressing shock wave forward transmission structure for a wave rotor combustor includes a wave rotor and a gas inlet port, and the wave rotor is provided with several wave rotor channels. When the wave rotor rotates, the several wave rotor channels communicate with the isolation section sleeve sequentially through the fan-shaped hole. The present invention suppresses reflected shock waves by changing a flow blockage ratio and a shape of the pneumatic valve to consume back transmission pressure, which is beneficial to a fuel intake process, so that steady working of the wave rotor combustor in a state of deviating from a design point can be implemented.

Classes IPC  ?

  • F23R 7/00 - Chambres de combustion à combustion intermittente ou explosive
  • F23R 3/56 - Chambres de combustion comportant des tubes à flamme rotatifs

94.

Semantic segmentation method and system for remote sensing image fusing GIS data

      
Numéro d'application 17144256
Numéro de brevet 11488403
Statut Délivré - en vigueur
Date de dépôt 2021-01-08
Date de la première publication 2022-03-24
Date d'octroi 2022-11-01
Propriétaire Nanjing University of Aeronautics and Astronautics (Chine)
Inventeur(s)
  • Hao, Jie
  • Gu, Yuhang

Abrégé

The present disclosure relates to a semantic segmentation method and system for a remote sensing image fusing GIS data. The method includes: obtaining a first remote sensing data training set and first GIS data; preprocessing the first remote sensing data training set to obtain a second remote sensing data training set; preprocessing the first GIS data based on the second remote sensing data training set to obtain second GIS data; performing data enhancement on the second remote sensing data training set to obtain a third remote sensing data training set; training a semantic segmentation model based on the third remote sensing data training set and the second GIS data; and performing semantic segmentation on the remote sensing image to be segmented based on the first GIS data and the trained semantic segmentation model to obtain a semantic set.

Classes IPC  ?

  • G06V 20/13 - Images satellite
  • G06V 30/262 - Techniques de post-traitement, p.ex. correction des résultats de la reconnaissance utilisant l’analyse contextuelle, p.ex. le contexte lexical, syntaxique ou sémantique
  • G06T 7/10 - Découpage; Détection de bords
  • G06K 9/62 - Méthodes ou dispositions pour la reconnaissance utilisant des moyens électroniques
  • G06T 3/60 - Rotation d'une image entière ou d'une partie d'image
  • G06T 5/00 - Amélioration ou restauration d'image
  • G06V 20/70 - RECONNAISSANCE OU COMPRÉHENSION D’IMAGES OU DE VIDÉOS Éléments spécifiques à la scène Étiquetage du contenu de scène, p.ex. en tirant des représentations syntaxiques ou sémantiques
  • G06V 10/774 - Dispositions pour la reconnaissance ou la compréhension d’images ou de vidéos utilisant la reconnaissance de formes ou l’apprentissage automatique utilisant l’intégration et la réduction de données, p.ex. analyse en composantes principales [PCA] ou analyse en composantes indépendantes [ ICA] ou cartes auto-organisatrices [SOM]; Séparation aveugle de source méthodes de Bootstrap, p.ex. "bagging” ou “boosting”

95.

Road recognition method and system based on seed point

      
Numéro d'application 17145193
Numéro de brevet 11967156
Statut Délivré - en vigueur
Date de dépôt 2021-01-08
Date de la première publication 2022-03-24
Date d'octroi 2024-04-23
Propriétaire Nanjing University of Aeronautics and Astronautics (Chine)
Inventeur(s)
  • Hao, Jie
  • Zhang, Lei

Abrégé

A road recognition method and system based on a seed point includes: obtaining a remote sensing image; obtaining a grayscale image; inserting a seed point in the grayscale image; searching for four initial road boundary points using the seed point as a reference point; obtaining a smallest bounding rectangle search box formed by the four initial road boundary points; obtaining a plurality of candidate search boxes based on the obtained search boxes; determining whether a sum of squares of grayscale differences between the plurality of candidate search boxes and the obtained search box is greater than a preset threshold; and if yes, stopping searching and completing road recognition; or if not, selecting a new search box from the plurality of candidate search boxes, and retrieving a plurality of candidate search boxes based on the new search box.

Classes IPC  ?

  • G06T 7/73 - Détermination de la position ou de l'orientation des objets ou des caméras utilisant des procédés basés sur les caractéristiques
  • B64D 47/08 - Aménagements des caméras
  • G06F 16/535 - Filtrage basé sur des données supplémentaires, p.ex. sur des profils d'utilisateurs ou de groupes
  • G06F 16/55 - Groupement; Classement
  • G06N 20/00 - Apprentissage automatique
  • G06T 7/12 - Découpage basé sur les bords
  • G06T 7/149 - Découpage; Détection de bords impliquant des modèles déformables, p.ex. des modèles de contours actifs
  • G06T 17/00 - Modélisation tridimensionnelle [3D] pour infographie
  • G06V 10/25 - Détermination d’une région d’intérêt [ROI] ou d’un volume d’intérêt [VOI]
  • G06V 10/30 - Filtrage de bruit
  • G06V 20/56 - Contexte ou environnement de l’image à l’extérieur d’un véhicule à partir de capteurs embarqués
  • G06V 20/64 - Objets tridimensionnels

96.

PROGRESSIVE METALLIC SURFACE MICRO-NANO MODIFICATION METHOD

      
Numéro d'application 17419818
Statut En instance
Date de dépôt 2020-07-01
Date de la première publication 2022-03-03
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Wei, Hongyu
  • Zhou, Laishui
  • Zhang, Huiliang
  • Hussain, Ghulam
  • Zhou, Wanlin
  • Chen, Haiji
  • Zhang, Xiao
  • Dong, Lili

Abrégé

A micro-nano incremental mechanical surface treatment method, comprising the following steps: using a modification tool having a designable end to contact a surface of a substrate material, rotating the modification tool in a local region and compressing the material surface, presetting processing parameters by means of 3D modeling software, and after the tool has processed the entire surface, enabling the tool to move downwards to the indented surface compressed previously. The process continues until the surface material is compressed to a pre-defined thickness, thereby achieving the goals of grain refinement and surface performance improvement. By means of the present method, a workpiece having a complex shape can be flexibly and designably surface modified. The method has the advantages of high bonding strength, no pollution, and low cost.

Classes IPC  ?

  • B81C 1/00 - Fabrication ou traitement de dispositifs ou de systèmes dans ou sur un substrat

97.

Radial-axial air gap three-phase disc-type transverse flux permanent magnet motor

      
Numéro d'application 17191652
Numéro de brevet 11482915
Statut Délivré - en vigueur
Date de dépôt 2021-03-03
Date de la première publication 2022-02-17
Date d'octroi 2022-10-25
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Chen, Zhihui
  • Chen, Jiaxin
  • Duan, Jinjin

Abrégé

Disclosed is a radial-axial air gap three-phase disc-type transverse flux permanent magnet motor. Each phase includes a stator consisting of shoe-shaped stator cores and shoe-shaped permanent magnets, and a radial-axial rotor. The permanent magnets are magnetized in the circumferential direction, and the magnetization directions of the two adjacent permanent magnets are opposite to each other. Armature windings are wound in the grooves formed by the alternately arranged stator cores and the permanent magnets. The radial-axial rotor includes radial teeth, axial teeth, and right-angled yokes. The radial teeth are connected to the axial teeth through the right-angled yokes. Adjacent radial/or axial teeth are spaced at a mechanical angle of 360/n degrees. Radial teeth and the adjacent axial teeth under the same pole pairs are spaced at a mechanical angle of 180/n degrees, where n is the number of pole pairs of the radial-axial air gap three-phase disc-type transverse flux permanent magnet motor.

Classes IPC  ?

  • H02K 21/14 - Moteurs synchrones à aimants permanents; Génératrices synchrones à aimants permanents avec des induits fixes et des aimants tournants avec des aimants tournant à l'intérieur des induits

98.

Method and system for determining helicopter rotor airfoil

      
Numéro d'application 17312336
Numéro de brevet 11423201
Statut Délivré - en vigueur
Date de dépôt 2020-08-07
Date de la première publication 2022-02-03
Date d'octroi 2022-08-23
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Zhao, Qijun
  • Wang, Bo
  • Jing, Simeng
  • Zhao, Guoqing
  • Chen, Xi
  • Wang, Qing

Abrégé

The present disclosure provides a method and system for determining a helicopter rotor airfoil. The method includes: randomly generating a sample point by using a Latin hypercube sampling (LHS) method (S1); determining characterization equations of upper and lower airfoil surfaces of an airfoil based on the airfoil sample point by using a class shape transformation (CST) method (S2); performing dynamic characteristic simulation on the airfoil according to the characterization equations of the upper and lower airfoil surfaces by using a computational fluid dynamics (CFD) method, to obtain a flow field characteristic of the airfoil (S3); establishing a mapping relationship between the sample point and the flow field characteristic by using a Kriging model, and training the mapping relationship by using a maximum likelihood estimation method and an expected improvement (EI) criterion, to obtain a trained mapping relationship (S4); determining an optimal sample point based on the trained mapping relationship by using Non-dominated Sorting Genetic Algorithm II (NSGA-II) (S5); and determining a rotor airfoil based on the optimal sample point (S6). The method performs optimized design on aerodynamic characteristics of the airfoil in a state with a changing incoming flow and a changing angle of attack, and can effectively alleviate dynamic stall in this state.

Classes IPC  ?

  • G06F 30/28 - Optimisation, vérification ou simulation de l’objet conçu utilisant la dynamique des fluides, p.ex. les équations de Navier-Stokes ou la dynamique des fluides numérique [DFN]
  • G06F 30/15 - Conception de véhicules, d’aéronefs ou d’embarcations
  • B64C 27/467 - Caractéristiques aérodynamiques
  • G06K 9/62 - Méthodes ou dispositions pour la reconnaissance utilisant des moyens électroniques
  • G06F 113/08 - Fluides
  • G06F 111/06 - Optimisation multi-objectif, p.ex. optimisation de Pareto utilisant le recuit simulé, les algorithmes de colonies de fourmis ou les algorithmes génétiques

99.

Consequent-pole permanent-magnet-biased bearingless double-salient-pole motor and control method thereof

      
Numéro d'application 17281490
Numéro de brevet 11658523
Statut Délivré - en vigueur
Date de dépôt 2019-11-06
Date de la première publication 2021-12-30
Date d'octroi 2023-05-23
Propriétaire
  • NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
  • QINHUAI INNOVATION INSTITUTE OF NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Yu, Li
  • Zhang, Zhuoran
  • Shi, Yuke
  • Sun, Linnan
  • Chen, Xu

Abrégé

A consequent-pole permanent magnet biased bearingless doubly-salient motor includes: a core of a stator/rotor, a middle part of a surface, facing an air gap (11), of each stator pole 1-1 is grooved toward an edge part of the stator pole 1-1 in an anti-clockwise direction, one permanent magnet is attached in each groove, and a surface, facing the air gap (11), of each permanent magnet (3) is the same in polarity; each stator pole 1-1 is wounded with an armature coil, the armature coils are serially connected in sequence to form an armature winding, and the armature winding is respectively connected to an external main circuit; and every three stator poles 1-1 are wound with a suspension coil, and the suspension coils opposite spatially and radially are serially connected to form a suspension winding connected to an external suspension control circuit.

Classes IPC  ?

  • H02K 1/17 - Noyaux statoriques à aimants permanents
  • H02K 7/09 - Association structurelle avec des paliers avec des paliers magnétiques
  • H02K 1/14 - Noyaux statoriques à pôles saillants
  • H02K 1/24 - Noyaux rotoriques à pôles saillants
  • H02K 3/18 - Enroulements pour pôles saillants

100.

MULTI-BODY FORMATION RECONSTRUCTION METHOD FOR UNMANNED DEVICE CLUSTER CONTROL

      
Numéro d'application 17287527
Statut En instance
Date de dépôt 2019-06-25
Date de la première publication 2021-11-11
Propriétaire NANJING UNIVERSITY OF AERONAUTICS AND ASTRONAUTICS (Chine)
Inventeur(s)
  • Wei, Xiaohui
  • Liao, Wei
  • Li, Xubo
  • Gao, Tianchi
  • Li, Long

Abrégé

Embodiments of the present invention relate to the technical field of unmanned device cluster control. Disclosed is a multi-body formation reconstruction method for an unmanned device cluster control. The method can solve the problem of being difficult to deal with the interference operating condition at present. The present invention comprises: step 1: reading a preset target formation; step 2: establishing a probability density function associated with the target formation; step 3: obtaining the current formation of all the controlled objects in the unmanned device cluster, and establishing a probability density function associated with the current formation; step 4: decreasing a cross entropy by adjusting the position of the controlled objects in the unmanned device cluster, and repeating executing the step 3 and the step 4 until the formation composed by the controlled objects in the unmanned device cluster is consistent with the target formation.

Classes IPC  ?

  • G05D 1/10 - Commande de la position ou du cap dans les trois dimensions simultanément
  • G06K 9/62 - Méthodes ou dispositions pour la reconnaissance utilisant des moyens électroniques
  • G06N 7/00 - Agencements informatiques fondés sur des modèles mathématiques spécifiques
  1     2        Prochaine page