John Mezzalingua Associates, LLC

United States of America

Back to Profile

1-70 of 70 for John Mezzalingua Associates, LLC Sort by
Query
Patent
World - WIPO
Aggregations Reset Report
Date
New (last 4 weeks) 1
2024 April (MTD) 1
2024 March 1
2024 February 2
2024 January 1
See more
IPC Class
H01Q 1/38 - Structural form of radiating elements, e.g. cone, spiral, umbrella formed by a conductive layer on an insulating support 9
H01Q 21/06 - Arrays of individually energised antenna units similarly polarised and spaced apart 8
H01Q 9/28 - Conical, cylindrical, cage, strip, gauze or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines 7
H01R 13/52 - Dustproof, splashproof, drip-proof, waterproof, or flameproof cases 6
H01R 13/646 - ELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS - Details of coupling devices of the kinds covered by groups  or specially adapted for high-frequency, e.g. structures providing an impedance match or phase match 6
See more
Found results for  patents

1.

METHOD FOR PID-BASED LINK ADAPTATION FOR DYNAMIC MODULATION AND CODING SELECTION

      
Application Number US2023035272
Publication Number 2024/086133
Status In Force
Filing Date 2023-10-17
Publication Date 2024-04-25
Owner JOHN MEZZALINGUA ASSOCIATES, LLC. (USA)
Inventor
  • Nicolini, Andrea
  • Notargiacomo, Massimo
  • Icolari, Vincenzo Riccardo

Abstract

A base station implements a PID (Proportional Integral Differential) control system to calculate an MCS (Modulation and Coding Scheme) in such a way that the base station responds to changes in channel conditions but does so in a stable manner and does not suffer from MCS jitter due to excessive response to spurious channel quality measurements. The method may be implemented for uplink data processing as well as downlink data processing and may be implemented by a 5G gNodeB as well as an LTE eNodeB.

IPC Classes  ?

  • H04L 1/00 - Arrangements for detecting or preventing errors in the information received
  • H04L 1/18 - Automatic repetition systems, e.g. Van Duuren systems
  • H04L 1/20 - Arrangements for detecting or preventing errors in the information received using signal-quality detector

2.

MULTI-CABLE MANAGEMENT APPARATUS

      
Application Number US2023031843
Publication Number 2024/050082
Status In Force
Filing Date 2023-09-01
Publication Date 2024-03-07
Owner JOHN MEZZALINGUA ASSOCIATES, LLC (USA)
Inventor
  • Cook, Morgan
  • Urtz, Thomas
  • Stevens, Brandon
  • Natoli, Christopher

Abstract

A cable management apparatus has a multi-clip frame having a plurality of anchor brackets. Mounted to each anchor bracket is a multi-cable clip that has a plurality of tabs configured to define a plurality of slots, wherein each slot is configured to hold a cable. Each multi-cable clip is mounted to its corresponding anchor bracket by a mounting pin that has a key handle at a first end and a fastener at a second end.

IPC Classes  ?

  • H02G 3/32 - Installations of cables or lines on walls, floors or ceilings using mounting clamps
  • H02G 1/14 - Methods or apparatus specially adapted for installing, maintaining, repairing, or dismantling electric cables or lines for joining or terminating cables
  • F16L 3/12 - Supports for pipes, cables or protective tubing, e.g. hangers, holders, clamps, cleats, clips, brackets substantially surrounding the pipe, cable or protective tubing comprising a member substantially surrounding the pipe, cable or protective tubing
  • F16L 3/137 - Supports for pipes, cables or protective tubing, e.g. hangers, holders, clamps, cleats, clips, brackets substantially surrounding the pipe, cable or protective tubing comprising a member substantially surrounding the pipe, cable or protective tubing and consisting of a flexible band
  • F16L 3/02 - Supports for pipes, cables or protective tubing, e.g. hangers, holders, clamps, cleats, clips, brackets partly surrounding the pipes, cables or protective tubing

3.

FOLDED ANTENNA DIPOLE WITH ON-SUBSTRATE PASSIVE RADIATORS

      
Application Number US2023030447
Publication Number 2024/039766
Status In Force
Filing Date 2023-08-17
Publication Date 2024-02-22
Owner JOHN MEZZALINGUA ASSOCIATES, LLC (USA)
Inventor Bamford, Lance

Abstract

A scalable folded dipole has an additional passive conductor feature disposed on the same substrate (such as a PCB) as the conductor pattern forming the folded dipole's arms. The passive conductor feature is placed in an open region in a gap between adjacent dipole arms. The presence of the passive conductor feature provides for improved tuning of the gaps between adjacent dipole arms as well as improved impedance matching.

IPC Classes  ?

  • H01Q 9/26 - Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole with folded element or elements, the folded parts being spaced apart a small fraction of operating wavelength
  • H01Q 5/48 - Combinations of two or more dipole type antennas
  • H01Q 21/06 - Arrays of individually energised antenna units similarly polarised and spaced apart
  • H01Q 1/38 - Structural form of radiating elements, e.g. cone, spiral, umbrella formed by a conductive layer on an insulating support
  • H01Q 1/24 - Supports; Mounting means by structural association with other equipment or articles with receiving set

4.

CONDUCTOR CAPTURE MECHANISM FOR HIGH CABLE DENSITY APPLICATIONS

      
Application Number US2023028699
Publication Number 2024/025949
Status In Force
Filing Date 2023-07-26
Publication Date 2024-02-01
Owner JOHN MEZZALINGUA ASSOCIATES, LLC (USA)
Inventor
  • Marketos, Leon Gerald
  • Natoli, Christopher

Abstract

A conductor capture mechanism for a power supply has a frame; a capture block disposed within the frame; an outer ramp disposed within the frame, the outer ramp configured to apply a pressure to a fastening component of a power cable disposed between the capture block and the outer ramp, wherein the pressure is along an outward direction; an inner ramp disposed adjacent to the outer ramp, the inner ramp configured to translate in a longitudinal direction; and a ramp screw disposed adjacent to the inner ramp, the ramp screw configured to, as it is tightened, cause the inner ramp to translate along the longitudinal direction, thereby causing the outer ramp to translate in the outward direction, thereby causing the outer ramp to apply the pressure against the fastening component.

IPC Classes  ?

  • H01R 13/58 - Means for relieving strain on wire connection, e.g. cord grip
  • H01R 11/12 - End pieces terminating in an eye, hook, or fork

5.

LOW PROFILE LOW BAND DIPOLE FOR SMALL CELL ANTENNAS

      
Application Number US2023027771
Publication Number 2024/015572
Status In Force
Filing Date 2023-07-14
Publication Date 2024-01-18
Owner JOHN MEZZALINGUA ASSOCIATES, LLC. (USA)
Inventor Tiwari, Anoop

Abstract

A multiband antenna has an array face with closely spaced dipoles of multiple frequency bands in the low band, the mid band, and C-band or CBRS (Citizens Broadband Radio Service). The low band dipole has four dipole arms formed in a plurality of loops from a single piece of metal. In one embodiment, the loops successively decrease in dimension, resulting in a tapered dipole arm shape and has a bend that bends the dipole arms downward to accommodate radome curvature. In a second embodiment, the outermost loop of each dipole arm is larger in volume and has its lateral loop features bent downward.

IPC Classes  ?

  • H01Q 5/48 - Combinations of two or more dipole type antennas
  • H01Q 21/06 - Arrays of individually energised antenna units similarly polarised and spaced apart
  • H01Q 13/10 - Resonant slot antennas
  • H01Q 5/50 - Feeding or matching arrangements for broad-band or multi-band operation
  • H01Q 9/16 - Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole

6.

UNIVERSAL MOUNT FOR DENSE INTEGRATION OF RADIO REMOTE UNITS

      
Application Number US2023026197
Publication Number 2023/250206
Status In Force
Filing Date 2023-06-26
Publication Date 2023-12-28
Owner JOHN MEZZALINGUA ASSOCIATES, LLC (USA)
Inventor
  • Urtz, Thomas
  • Chawgo, Shawn
  • Natoli, Christopher

Abstract

A mounting apparatus for one or more radios has a mounting frame that can translate and pivot relative to its upper and lower wall brackets. The mounting frame has two sets of radio mounting brackets affixed to its first face and its second face, enabling two radios to be mounted, one of the first face and the other on the second face. This enables easy access to multiple radios for installation and maintenance and enables a denser packing of radios into limited spaced.

IPC Classes  ?

  • F16M 11/12 - Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting in more than one direction
  • F16M 11/18 - Heads with mechanism for moving the apparatus relatively to the stand
  • H04W 88/08 - Access point devices

7.

METHOD FOR COMPUTING AN ESTIMATED DATA AVAILABILITY FOR UPLINK CONTROL DATA

      
Application Number US2023025449
Publication Number 2023/244743
Status In Force
Filing Date 2023-06-15
Publication Date 2023-12-21
Owner JOHN MEZZALINGUA ASSOCIATES, LLC (USA)
Inventor
  • Kim, Jaeweon
  • Martin, Jon Mitchell
  • Shi, Yan
  • Chandra, Alex Elisa

Abstract

A method for computing an estimated data availability for UCI (Uplink Control Information) in an LTE or 5G system enables a base station (e.g., eNodeB or gNodeB) to estimate how much data is available within its allocated PUSCH (Physical Uplink Shared Channel) data for the UCI data. The method enables a UE to insert a sufficient amount of UCI data without consuming resources required for the PUSCH data, thereby preventing decode failures.

IPC Classes  ?

  • H04L 1/00 - Arrangements for detecting or preventing errors in the information received
  • H04W 72/21 - Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
  • H04L 5/00 - Arrangements affording multiple use of the transmission path

8.

FOLDED MID BAND DIPOLE WITH IMPROVED LOW BAND TRANSPARENCY

      
Application Number US2023022345
Publication Number 2023/224966
Status In Force
Filing Date 2023-05-16
Publication Date 2023-11-23
Owner JOHN MEZZALINGUA ASSOCIATES, LLC (USA)
Inventor
  • Zhu, Jiaqiang
  • Chen, Wengang
  • Sundararajan, Niranjan

Abstract

A midband dipole for a multiband antenna has a plurality of decoupler circuits; a plurality of dipole arms, each having a first region, a second region, and a connecting trace coupling the first region to the second region, wherein the first region is coupled to one of the plurality of decoupler circuits, and the second region is coupled to an adjacent decoupler circuit; and a plurality of suppressor plates, wherein each of the plurality of suppressor plates is coupled to a corresponding first region of a corresponding dipole arm, and each of the plurality of suppressor plates covers a gap between the corresponding dipole arm and an adjacent dipole arm. The midband dipole mitigates resonance from nearby lowband dipoles by suppressing resonance where hot spots might occur in gaps between adjacent dipole arms.

IPC Classes  ?

  • H01Q 21/06 - Arrays of individually energised antenna units similarly polarised and spaced apart
  • H01Q 5/307 - Individual or coupled radiating elements, each element being fed in an unspecified way
  • H01Q 1/38 - Structural form of radiating elements, e.g. cone, spiral, umbrella formed by a conductive layer on an insulating support

9.

LOW BAND DIPOLE WITH EXTENDED BANDWIDTH AND IMPROVED MIDBAND CLOAKING

      
Application Number US2023021172
Publication Number 2023/215567
Status In Force
Filing Date 2023-05-05
Publication Date 2023-11-09
Owner JOHN MEZZALINGUA ASSOCIATES, LLC (USA)
Inventor
  • Zhu, Jiaqiang
  • Sundararajan, Niranjan
  • Chen, Wengang

Abstract

A low band dipole for a dense multiband antenna array has a plurality of dipole arms. The dipole arms have a coupling plate disposed on a first side of a PCB and a conductive trace pattern disposed on a second side of the PCB. The conductive trace pattern has a plurality of resonator block structures that are coupled together by a phase shifting trace along a first edge of the conductive trace pattern and a bandwidth compensating disposed along a second edge of the conductive trace pattern.

IPC Classes  ?

  • H01Q 21/06 - Arrays of individually energised antenna units similarly polarised and spaced apart
  • H01Q 5/50 - Feeding or matching arrangements for broad-band or multi-band operation
  • H01Q 5/48 - Combinations of two or more dipole type antennas
  • H01Q 3/30 - Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the distribution of energy across a radiating aperture varying the phase
  • H01Q 1/38 - Structural form of radiating elements, e.g. cone, spiral, umbrella formed by a conductive layer on an insulating support

10.

MASSIVE MIMO BEAMFORMING ANTENNA WITH IMPROVED GAIN

      
Application Number US2023020387
Publication Number 2023/212307
Status In Force
Filing Date 2023-04-28
Publication Date 2023-11-02
Owner JOHN MEZZALINGUA ASSOCIATES, LLC (USA)
Inventor
  • Sundararajan, Niranjan
  • Jang, Taehee

Abstract

An 8T8R antenna has a plurality of columns of antenna elements whereby a subset of the columns are combined into a plurality of composite columns. In an example, the antenna has six columns of antenna elements whereby the two columns at either end of the array are combined into a composite column. The antenna ports corresponding to the two outer composite columns are coupled to a splitter/combiner that has a power divider and a delay line to provide phase compensation. The antenna also has a phase compensator that provides for phase compensation between the outputs of the splitter/combiners and the antenna ports corresponding to the inner columns that are not combined into composite columns. In a variation, the columns of antenna elements are combined into a plurality of composite columns, each having a pair of columns, whereby the number of columns is twice the number of composite columns.

IPC Classes  ?

  • H01Q 21/06 - Arrays of individually energised antenna units similarly polarised and spaced apart
  • H01Q 21/00 - Antenna arrays or systems
  • H01Q 3/26 - Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the distribution of energy across a radiating aperture

11.

METHOD AND SYSTEM FOR EXCHANGING SECONDARY CELL INFORMATION FOR CARRIER AGGREGATION

      
Application Number US2023019840
Publication Number 2023/211964
Status In Force
Filing Date 2023-04-25
Publication Date 2023-11-02
Owner JOHN MEZZALINGUA ASSOCIATES, LLC (USA)
Inventor
  • Turner, Stephen
  • Eye, Randall
  • Ferri, Giovanni

Abstract

A 5G gNodeB has a Centralized Unit (CU) and one or more Distributed Units (DU). Each of the one or more DUs has a cell topology information that it sends to the CU so that the CU has information for each DU for each of the DU's cells, including which cells are available to each primary cell for carrier aggregation. When a UE connects to the CU, the CU queries its configuration information - including cell topology information for the DU connected to the UE to determine if and which secondary cells are available for carrier aggregation. If so, the CU may signal the DU to configure and subsequently activate the one or more secondary cells to which the UE can connect for carrier aggregation.

IPC Classes  ?

  • H04W 48/10 - Access restriction or access information delivery, e.g. discovery data delivery using broadcasted information
  • H04W 48/12 - Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
  • H04L 5/00 - Arrangements affording multiple use of the transmission path
  • H04W 92/20 - Interfaces between hierarchically similar devices between access points

12.

QUARTER TURN TRANSITION CLIP FOR RF CABLE INSTALLATION IN AN ANTENNA

      
Application Number US2023015081
Publication Number 2023/200537
Status In Force
Filing Date 2023-03-13
Publication Date 2023-10-19
Owner JOHN MEZZALINGUA ASSOCIATES, LLC (USA)
Inventor Urtz, Thomas

Abstract

An antenna has a plurality of dipoles disposed on a reflector plate. Mounted to the reflector plate is a PCB (Printed Circuit Board) having a plurality of keyed slots, one per radiator of the plurality of dipoles. Disposed within each keyed slot is a transition clip holding an RF (Radio Frequency) cable in place. The transition clip has a shape that holds it in place with a quarter turn, obviating the need to solder the transition clip in place before installing the RF cable. The transition clip is configured to mechanically and electrically couple to the outer conductor of the RF cable and holds in place during soldering. The transition clip and PCB are configured so that the steps of soldering the outer conductor to the transition clip and the inner conductor to an RF signal solder point on the PCB may be performed from the same side of the PCB.

IPC Classes  ?

  • H01Q 1/12 - Supports; Mounting means
  • H01Q 1/24 - Supports; Mounting means by structural association with other equipment or articles with receiving set

13.

ULTRA WIDE BAND MINITIARIZED DIPOLE ANTENNA WITH IMPROVED GAIN AND BEAM STABILITY

      
Application Number US2023014945
Publication Number 2023/172716
Status In Force
Filing Date 2023-03-10
Publication Date 2023-09-14
Owner JOHN MEZZALINGUA ASSOCIATES, LLC (USA)
Inventor
  • Tiwari, Anoop
  • Sundararajan, Niranjan

Abstract

A dipole capable of radiating in a wide frequency range of 2.7-4.3 GHz has a folded dipole conductive pattern that is formed on the upper surface of a PCB and a passive conductive pattern that is formed on the lower surface of the PCB providing a wide-band nature to the antenna element. The folded dipole conductive pattern has four base regions, each having a bond pad and four meander traces that couple the adjacent base regions. Each of the four base regions electrically couples to its corresponding balun circuit at one of four solder joints at a corresponding solder joint tab, wherein each of the solder joint tabs mechanically couples with the PCB at one of its four comers. The dipole may also include a passive director that is disposed on an upper surface of the PCB in an open region defined by the folded dipole conductive pattern.

IPC Classes  ?

  • H01Q 9/28 - Conical, cylindrical, cage, strip, gauze or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines
  • H01Q 5/25 - Ultra-wideband [UWB] systems, e.g. multiple resonance systems; Pulse systems

14.

LOWBAND DIPOLE WITH IMPROVED GAIN AND ISOLATION

      
Application Number US2023061280
Publication Number 2023/147366
Status In Force
Filing Date 2023-01-25
Publication Date 2023-08-03
Owner JOHN MEZZALINGUA ASSOCIATES, LLC (USA)
Inventor
  • Zhu, Jiaqiang
  • Chen, Wengang
  • Sundararajan, Niranjan

Abstract

A lowband radiator has four dipole arms and a central region that is centered at the intersection of the dipole arms. Each of the dipole arms has a sequence of capacitive and inductive structures and a pair of high gain wings that are disposed in the dipole central region. In one embodiment of the lowband radiator, each dipole arm has a gap within the central region that is colinear with the dipole arm. The dipoles provide for improved isolation from nearby midband radiators while providing high gain.

IPC Classes  ?

  • H01Q 9/28 - Conical, cylindrical, cage, strip, gauze or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines
  • H01Q 1/38 - Structural form of radiating elements, e.g. cone, spiral, umbrella formed by a conductive layer on an insulating support

15.

DISTRIBUTED RADIO SYSTEM FOR COMBINING LEGACY ANALOG BASE STATION SIGNALS WITH PACKETIZED MID-HAUL SIGNALS OF MULTIPLE OPERATORS AND PRIVATE NETWORKS

      
Application Number US2022052855
Publication Number 2023/114308
Status In Force
Filing Date 2022-12-14
Publication Date 2023-06-22
Owner JOHN MEZZALINGUA ASSOCIATES, LLC (USA)
Inventor
  • Notargiacomo, Massimo
  • Marchese, Fabrizio
  • Chiurco, Giovanni
  • Gabelli, Giulio

Abstract

A distributed radio system has one or more distributed radio processors that processes analog RF signals from a plurality of legacy base station transceivers (BTSs) as well as packetized digital mid-haul data (such as 7.2x data packets) from one or more baseband units. The system digitizes the RF signals and provides baseband frequency offsets to the I/Q time domain data processed from the digital mid-haul data such that each incoming signal is assigned a unique carrier baseband frequency offset so that none of the signals interferes with another. The digital signals are summed and transmitted to one or more remote units. For the uplink, the process is reversed. A supervisor module provides the offset frequencies to the relevant digital baseband signals.

IPC Classes  ?

16.

FREQUENCY SELECTIVE PARASITIC DIRECTOR FOR IMPROVED MIDBAND PERFORMANCE AND REDUCED C-BAND/CBRS INTERFERENCE

      
Application Number US2022077913
Publication Number 2023/064774
Status In Force
Filing Date 2022-10-11
Publication Date 2023-04-20
Owner JOHN MEZZALINGUA ASSOCIATES, LLC (USA)
Inventor
  • Wayton, Evan
  • Tiwari, Anoop

Abstract

Disclosed are embodiments of a parasitic director that may be deployed with mid band radiators in a multiband antenna, wherein the exemplary directors improve the performance of the mid band radiator assembly in terms of and return loss, while being rendered effectively transparent to nearby C-Band or CBRS radiators. Adding the features helps in suppressing the radiating resonance modes originating from parasitics. Also, a sharper null may be achieved at the edges of the pass-band frequency offering higher frequency selectivity. Such embodiments enable broadening of C-band/CBRS beams in Azimuth plane thereby eliminating any secondary interference. This enables denser packing of radiators of different frequency bands while mitigating interference and 3dB beamwidth degradation due to higher band (e.g., C-Band or CBRS) coupling and reradiating from the mid band parasitic components.

IPC Classes  ?

  • H01Q 9/26 - Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole with folded element or elements, the folded parts being spaced apart a small fraction of operating wavelength
  • H01Q 21/26 - Turnstile or like antennas comprising arrangements of three or more elongated elements disposed radially and symmetrically in a horizontal plane about a common centre
  • H01Q 5/42 - Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements using two or more imbricated arrays

17.

VACUUM SOLDERED CONNECTOR HAVING AN INSULATOR WITH A CHECK VALVE TO PREVENT WATER INGRESS

      
Application Number US2022078195
Publication Number 2023/064950
Status In Force
Filing Date 2022-10-17
Publication Date 2023-04-20
Owner JOHN MEZZALINGUA ASSOCIATES, LLC (USA)
Inventor
  • Benn, Jeremy
  • Madonna, Dominick
  • Urtz, Thomas

Abstract

An RF connector has an insulator that allows water to pass through it away from any solder connections but blocks the ingress of water from the outside into the RF connector's solder joints. The insulator comprises a check valve means. The check valve means may be disposed out the outer cylindrical surface of the insulator and may have one or more Tesla valve structures.

IPC Classes  ?

  • H01R 13/52 - Dustproof, splashproof, drip-proof, waterproof, or flameproof cases
  • H01R 13/6581 - Shield structure

18.

LUNEBURG LENS-BASED SYSTEM FOR MASSIVE MIMO

      
Application Number US2022076457
Publication Number 2023/049652
Status In Force
Filing Date 2022-09-15
Publication Date 2023-03-30
Owner JOHN MEZZALINGUA ASSOCIATES, LLC (USA)
Inventor
  • Bamford, Lance
  • Tierney Jr., Michael Rody

Abstract

Disclosed is a system for performing Massive MIMO or Multi-User MIMO using a gradient index sphere (such as a Luneburg Lens). The gradient index sphere may have a plurality of radiators disposed along its outer surface such that each radiator radiates inward toward the center of the sphere so that the sphere focuses the energy from each radiator to form a tight beam. This provides for improved uplink gain for detecting and locating a mobile device within range of the system, and it enables high performance with reduced signal processing required for array-based beamforming.

IPC Classes  ?

  • H04B 7/06 - Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
  • H04B 7/0408 - Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
  • H04B 7/0452 - Multi-user MIMO systems
  • H01Q 19/06 - Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens
  • H01Q 21/20 - Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along, or adjacent to, a curvilinear path

19.

MINIATURIZED WIDEBAND 3-WAY SPLITTERS FOR ULTRA-DENSE QUASI-OMNI BASE STATION ANTENNAS

      
Application Number US2022075825
Publication Number 2023/034907
Status In Force
Filing Date 2022-09-01
Publication Date 2023-03-09
Owner JOHN MEZZALINGUA ASSOCIATES, LLC (USA)
Inventor
  • Mishra, Ghanshyam
  • Wayton, Evan

Abstract

Disclosed is a splitter for use in an ultra-dense multi-band antenna. The splitter comprises a first twelfth-wave transformer and a second twelfth-stage transformer coupled serially. The first twelfth-wave transformer stage has a split and two parallel paths, each of the two parallel paths having a meander structure, and wherein the second twelfth-wave transformer stage has a splitter junction and a plurality of splitter branches. By splitting the input to the first twelfth-wave transformer stage into two parallel paths, it is possible to provide a controlled input impedance while providing meander lines that are compact and thus take up less real estate on a PCB (Printed Circuit Board).

IPC Classes  ?

  • H01Q 1/24 - Supports; Mounting means by structural association with other equipment or articles with receiving set
  • H01Q 1/38 - Structural form of radiating elements, e.g. cone, spiral, umbrella formed by a conductive layer on an insulating support
  • H01Q 21/20 - Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along, or adjacent to, a curvilinear path
  • H04W 88/08 - Access point devices

20.

CONFIGURABLE POWER DISTRIBUTION SYSTEM FOR REMOTE RADIO UNITS

      
Application Number US2022037308
Publication Number 2023/288072
Status In Force
Filing Date 2022-07-15
Publication Date 2023-01-19
Owner JOHN MEZZALINGUA ASSOCIATES, LLC (USA)
Inventor
  • Marketos, Leon
  • Guntupalli, Sri

Abstract

Disclosed is a power distribution system for powering a plurality of remote radio heads mounted on the top of a cell tower. The distribution system includes a plurality of bulk power inputs, each of which is coupled to a row of power input sockets, and a plurality of breaker input socket rows. The power input socket rows and breaker input socket rows are arranged such that they are evenly spaced and the sockets are in columns. The system includes a plurality of jumpers that are designed to be installed such that multiple combinations of connections between bulk power inputs and circuit breaker inputs such that the system can be easily reconfigured.

IPC Classes  ?

  • H02J 1/00 - Circuit arrangements for dc mains or dc distribution networks
  • H04W 88/08 - Access point devices

21.

8T8R QUASI-OMNIDIRECTIONAL ANTENNA

      
Application Number US2022036186
Publication Number 2023/283223
Status In Force
Filing Date 2022-07-06
Publication Date 2023-01-12
Owner JOHN MEZZALINGUA ASSOCIATES, LLC (USA)
Inventor
  • Sundararajan, Niranjan
  • Wayton, Evan

Abstract

Disclosed is a quasi-omnidirectional antenna having three array faces, wherein each of the three array faces has a radiator array having a plurality of radiator columns. Each of the corresponding radiator columns on the radiator arrays are coupled together to a single pair of antenna ports, one per polarization. This results in a service beam having three gain lobes that can be swept in unison in a scan. By scanning the service beam, the antenna may enable a high-gain connection to a mobile device, emulating a high gain omnidirectional antenna. Further disclosed is a variation having four array faces spaced 90 degrees apart, which offers additional performance benefits.

IPC Classes  ?

  • H01Q 21/06 - Arrays of individually energised antenna units similarly polarised and spaced apart
  • H01Q 9/06 - Resonant antennas - Details

22.

TRANSPARENT BROADBAND ANTENNA

      
Application Number US2022034243
Publication Number 2022/271628
Status In Force
Filing Date 2022-06-21
Publication Date 2022-12-29
Owner JOHN MEZZALINGUA ASSOCIATES, LLC (USA)
Inventor
  • Bamford, Lance
  • Benn, Jeremy

Abstract

A transparent broadband antenna has two conductive leaves that are configured to be axially symmetric about two orthogonal axes. The transparent broadband antenna is designed as having two back-to-back Vivaldi radiators and four identically curved outer corners. The back-to-back Vivaldi radiators provide high performance from 617 MHz through 7 GHz while preventing return waves that may cause impedance mismatch. The antenna further comprises a feed structure that enables direct coupling from an RF cable to the two conductive leads, obviating the need for a matching circuit and subsequent bandwidth limitations.

IPC Classes  ?

  • H01Q 5/20 - Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements characterised by the operating wavebands
  • H01Q 1/38 - Structural form of radiating elements, e.g. cone, spiral, umbrella formed by a conductive layer on an insulating support
  • H01Q 1/02 - Arrangements for de-icing; Arrangements for drying-out
  • H04B 7/0413 - MIMO systems

23.

ANTENNA RADOME FOR REDUCED WIND LOADING

      
Application Number US2022031259
Publication Number 2022/251578
Status In Force
Filing Date 2022-05-27
Publication Date 2022-12-01
Owner JOHN MEZZALINGUA ASSOCIATES, LLC (USA)
Inventor Janardhanan, Karthik

Abstract

Disclosed is a radome for a cellular antenna that significantly improves windloading, which may be crucial for successful deployments on cell towers where the antenna may be deployed at considerable height and in environments where extreme weather is possible. The windloading performance is provided by the profile shape of the radome. The profile shape may be accommodated through the use of low band dipoles that are shorter in length.

IPC Classes  ?

  • H01Q 1/42 - Housings not intimately mechanically associated with radiating elements, e.g. radome

24.

LOW-COST MINIATURIZED VERTICAL COAXIAL CABLE TO PCB TRANSITION FOR USE IN ULTRA-DENSE BASE STATION ANTENNAS

      
Application Number US2022030244
Publication Number 2022/246192
Status In Force
Filing Date 2022-05-20
Publication Date 2022-11-24
Owner JOHN MEZZALINGUA ASSOCIATES, LLC (USA)
Inventor
  • Vakil, Vankar
  • Wayton, Evan
  • Tiwari, Anoop

Abstract

Disclosed is a vertical RF launch mechanism for installing an RF cable onto an antenna PCB. The mechanism includes a cutout formed in the PCB whereby the cutout has interlocking tabs and an inner conductor receptacle formed in one interior edge. Installed on this interior edge is a vertical clip that has two tabs and a cylindrical outer conductor receptacle. The design of the cutout and the clip allows an RF cable to be installed so that it is vertically mounted to the PCB, provides a high-quality coupling for both the inner and outer conductors of the RF cables. It enables the soldering for both the inner and outer conductors to be done from the same side of the PCB. It also provides for a smaller cutout relative to conventional RF PCB launches, enabling a higher density placement of RF cable launches on a given PCB, providing for ultra-dense antenna designs.

IPC Classes  ?

  • H01Q 1/38 - Structural form of radiating elements, e.g. cone, spiral, umbrella formed by a conductive layer on an insulating support
  • H01Q 1/24 - Supports; Mounting means by structural association with other equipment or articles with receiving set
  • H01R 24/38 - Two-part coupling devices, or either of their cooperating parts, characterised by their overall structure having concentrically or coaxially arranged contacts
  • H01R 103/00 - Two poles

25.

MECHANISM FOR CONNECTING AND DISCONNECTING CLUSTER RF CONNECTOR

      
Application Number US2022027817
Publication Number 2022/235896
Status In Force
Filing Date 2022-05-05
Publication Date 2022-11-10
Owner JOHN MEZZALINGUA ASSOCIATES, LLC (USA)
Inventor
  • Urtz, Thomas
  • Benn, Jeremy
  • Natoli, Christopher

Abstract

A clamp mechanism for an RF cluster connector enables multiple RF connections within a cluster connector to be engaged and disengaged in such a way that prevents damage to the conductors. It also eases the process of engaging and disengaging through the use of two lever arms that may be easily used by a technician in challenging locations (such as at the top of a cell tower) and in densely arranged RF ports (such as for a multi-user or massive MIMO antenna).

IPC Classes  ?

  • H01R 13/629 - Additional means for facilitating engagement or disengagement of coupling parts, e.g. aligning or guiding means, levers, gas pressure
  • H01R 4/40 - Pivotable clamping member
  • H01R 9/05 - Connectors arranged to contact a plurality of the conductors of a multiconductor cable for coaxial cables
  • H01R 13/639 - Additional means for holding or locking coupling parts together after engagement
  • H01R 24/40 - Two-part coupling devices, or either of their cooperating parts, characterised by their overall structure having concentrically or coaxially arranged contacts specially adapted for high frequency

26.

BROADBAND DECOUPLED MIDBAND DIPOLE FOR A DENSE MULTIBAND ANTENNA

      
Application Number US2022019261
Publication Number 2022/192194
Status In Force
Filing Date 2022-03-08
Publication Date 2022-09-15
Owner JOHN MEZZALINGUA ASSOCIATES, LLC (USA)
Inventor
  • Zhu, Jiaqiang
  • Sundararajan, Niranjan
  • Chen, Wengang

Abstract

Disclosed is a midband dipole for use in a multiband antenna. The midband dipole has four folded dipoles, each of which is coupled to a decoupling circuit that has two capacitance points. The disclosed decoupling circuit configuration mitigates common mode resonance with nearby lowband dipoles, further preventing cross polarization in the midband.

IPC Classes  ?

  • H01Q 9/06 - Resonant antennas - Details
  • H01Q 9/42 - Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength

27.

GEARED DRIVER MECHANISM FOR A COMPACT ANTENNA PHASE SHIFTER

      
Application Number US2022012851
Publication Number 2022/159411
Status In Force
Filing Date 2022-01-19
Publication Date 2022-07-28
Owner JOHN MEZZALINGUA ASSOCIATES, LLC (USA)
Inventor
  • Meshram, Nikhil
  • Buondelmonte, Charles

Abstract

Disclosed is a compact phase shifter board for an antenna. The phase shifter board has at least one drive shaft having a drive bracket. The drive bracket has two slots oriented perpendicularly to the drive shaft. Each slot configured to engage with a drive pin of a first geared wiper arm such that translation motion of the drive shaft causes the first geared wiper arms to rotate. Each geared wiper arm has a first gear that engages with a second gear of a second geared wiper arm. The first and second gears and configured so that any rotational motion of the first geared wiper arms causes the corresponding second geared wiper arm to rotate in conjunction.

IPC Classes  ?

  • H01Q 3/32 - Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the distribution of energy across a radiating aperture varying the phase by mechanical means

28.

DECOUPLED DIPOLE CONFIGURATION FOR ENABLING ENHANCED PACKING DENSITY FOR MULTIBAND ANTENNAS

      
Application Number US2021063693
Publication Number 2022/140139
Status In Force
Filing Date 2021-12-16
Publication Date 2022-06-30
Owner JOHN MEZZALINGUA ASSOCIATES, LLC (USA)
Inventor
  • Zhu, Jiaqiang
  • Chen, Wengang
  • Sundararajan, Niranjan

Abstract

Disclosed is a decoupling dipole structure that renders a midband dipole effectively transparent to a nearby lowband dipole. This not only improves the beam quality in the lowband without sacrificing beam quality in the midband, it also enables different lowband dipoles to be employed to customize the lowband performance of the multiband antenna without requiring a redesign of the midband dipoles or of the array face.

IPC Classes  ?

  • H01Q 21/30 - Combinations of separate antenna units operating in different wavebands and connected to a common feeder system
  • H01Q 9/06 - Resonant antennas - Details
  • H01Q 9/42 - Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength

29.

INTEGRATED AND PHASE-COMPENSATED BASE STATION ANTENNA PHASE SHIFTER AND CALIBRATION BOARD

      
Application Number US2021051878
Publication Number 2022/072227
Status In Force
Filing Date 2021-09-24
Publication Date 2022-04-07
Owner JOHN MEZZALINGUA ASSOCIATES, LLC (USA)
Inventor
  • Jang, Taehee
  • Sundararajan, Niranjan

Abstract

Disclosed is an antenna having a plurality of radiator columns and an integrated phase shifter / calibration board. The radiator columns have radiator clusters that may be differentially phase to provide beam tilt. The input traces of each of the phase shifters is capacitively coupled to a Wilkinson power divider that sums the power of all the input signals, thereby providing a calibration function. The output traces of each of the phase shifters has a designated meander pattern that provides phase alignment for all the output signals to prevent phase mismatches between signals fed to the radiator clusters.

IPC Classes  ?

  • H01Q 3/36 - Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the distribution of energy across a radiating aperture varying the phase by electrical means with variable phase-shifters
  • H01Q 9/06 - Resonant antennas - Details

30.

HIGH PERFORMANCE FOLDED DIPOLE FOR MULTIBAND ANTENNAS

      
Application Number US2021049347
Publication Number 2022/055915
Status In Force
Filing Date 2021-09-08
Publication Date 2022-03-17
Owner JOHN MEZZALINGUA ASSOCIATES, LLC (USA)
Inventor
  • Sundararajan, Niranjan
  • Zhu, Jiaqiang

Abstract

Disclosed is a radiator assembly configured to operate in the range of 3.4 – 4.2 GHz. The radiator assembly comprises a folded dipole with four dipole arms that radiate in two orthogonal polarization planes, whereby the signal of each polarization orientation is radiated by two opposite radiator arms that radiate the signal 180degrees out of phase from each other. The radiator assembly has a balun structure that includes a balun trace that conductively couples to a ground element on the same side of the balun stem plate. The combination of the shape of the folded dipole and the balun structure reduces cross polarization between the two polarization states and maintains strong phase control between the opposing radiator arms.

IPC Classes  ?

  • H01Q 9/28 - Conical, cylindrical, cage, strip, gauze or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines
  • H01Q 21/24 - Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction

31.

INTEGRATED RADIO NETWORK WITH MULTI OPERATOR AND MULTI SIGNAL FORMAT FRONTHAUL CAPABILITY

      
Application Number US2021037366
Publication Number 2021/257526
Status In Force
Filing Date 2021-06-15
Publication Date 2021-12-23
Owner JOHN MEZZALINGUA ASSOCIATES, LLC (USA)
Inventor
  • Notargiacomo, Maasimo
  • Brizzi, Gilberto
  • Foresta, Francesco
  • Pagani, Alessandro
  • Chiurco, Giovanni
  • Gabelli, Giulio
  • Durante, Davide
  • Marchese, Fabrizio
  • Wark, Richard
  • Tierney, Michael

Abstract

Disclosed is an integrated radio network that can host a plurality of network operators, each of which may be transmitting and receiving packetized signals over a fronthaul network. Each of the network operators may have one or more prioritized packet streams whereby a given network operator may have a plurality of prioritized packet streams having a different allocated priority, and the plurality of network operators may have a differentiated priority among each other. The integrated radio network has a switch/monitor that (1) identifies one or more network operators exceeding their respective allocations and mitigates the violation; and (2) identifies fronthaul network bottlenecks and takes action to mitigate the bottleneck by reducing or impeding low priority packet streams.

IPC Classes  ?

  • H04W 28/02 - Traffic management, e.g. flow control or congestion control
  • H04W 28/16 - Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
  • H04L 12/851 - Traffic type related actions, e.g. QoS or priority

32.

CLUSTER RF CONNECTOR WITH BIASING INTERFACE

      
Application Number US2021019915
Publication Number 2021/225666
Status In Force
Filing Date 2021-02-26
Publication Date 2021-11-11
Owner JOHN MEZZALINGUA ASSOCIATES, LLC (USA)
Inventor
  • Urtz, Thomas
  • Benn, Jeremy
  • Natoli, Christopher
  • Chawgo, Shawn

Abstract

A cluster connector and cluster port for simultaneously engaging multiple RF connectors with a corresponding plurality of RF ports, wherein the cluster port may be coupled to an RF antenna or radio. The cluster port has a plurality of receiving interfaces wherein each of the receiving interfaces has an axial biasing element that enables simultaneous connection with a plurality of coupling interfaces, wherein each of the coupling interfaces is coupled to the end of an RF cable. The cluster connector of the disclosure also enables selective removal, replacement of one RF cable, and the corresponding coupling interface, without impacting other cables/coupling interfaces.

IPC Classes  ?

  • H01R 13/646 - ELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS - Details of coupling devices of the kinds covered by groups  or specially adapted for high-frequency, e.g. structures providing an impedance match or phase match
  • H01R 13/52 - Dustproof, splashproof, drip-proof, waterproof, or flameproof cases

33.

MULTI-BAND ANTENNA ARRAY FACE AND RADIATOR CONFIGURATION FOR MITIGATING INTERFERENCE

      
Application Number US2021012153
Publication Number 2021/150365
Status In Force
Filing Date 2021-01-05
Publication Date 2021-07-29
Owner JOHN MEZZALINGUA ASSOCIATES, LLC (USA)
Inventor Wayton, Evan

Abstract

Disclosed is a multiband antenna having a plurality of low band radiators, a plurality of mid band radiators, and a plurality of high band radiators. The high band radiators are disposed in a column between two adjacent low band radiators. Each of the low band radiators has a plurality of inward dipole arms and a plurality of outward dipole arms, wherein the inward dipole arms and the outward dipole arms have a different structure. The inward dipole arm structure is designed to minimize interference and shading with the high band radiators. Each of the mid band radiators has a parasitic disk with a plurality of cloaking slots.

IPC Classes  ?

  • H01Q 5/25 - Ultra-wideband [UWB] systems, e.g. multiple resonance systems; Pulse systems
  • H01Q 9/28 - Conical, cylindrical, cage, strip, gauze or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines

34.

CLAMP ASSEMBLY FOR RF COMPRESSION CONNECTOR

      
Application Number US2021013399
Publication Number 2021/146395
Status In Force
Filing Date 2021-01-14
Publication Date 2021-07-22
Owner JOHN MEZZALINGUA ASSOCIATES, LLC (USA)
Inventor
  • Benn, Jeremy
  • Chawgo, Shawn
  • Natoli, Christopher

Abstract

An RF compression connector includes a simplified clamp mechanism having a common clamp base, and a plurality of segments disposed on the common clamp base wherein the segments include alternating first and second retention members disposed along the circumference of the clamp, wherein each of the first retention members has an outwardly projecting shoulder to engage a connector body and each of the second retention members includes an inwardly projecting shoulder to engage an outer jacket of a coxial cable connector. The first and second retention members of the clamp mechanism inhibit separation of the connector body relative to the coaxial cable.

IPC Classes  ?

  • H01R 24/40 - Two-part coupling devices, or either of their cooperating parts, characterised by their overall structure having concentrically or coaxially arranged contacts specially adapted for high frequency
  • H01R 13/02 - Contact members
  • H01R 9/05 - Connectors arranged to contact a plurality of the conductors of a multiconductor cable for coaxial cables

35.

ANTENNA HAVING AN INTERNAL CABLE TOWER AND GUIDES FOR PRECISE CABLE PLACEMENT AND METHOD FOR CONSTRUCTING THE SAME

      
Application Number US2020056589
Publication Number 2021/081042
Status In Force
Filing Date 2020-10-21
Publication Date 2021-04-29
Owner JOHN MEZZALINGUA ASSOCIATES, LLC (USA)
Inventor
  • Ragos, Jordan
  • Janardhanan, Karthik
  • Wayton, Evan, C.
  • Scalzo, Mario

Abstract

A sector antenna is provided comprising a base plate, a cable tower mounting to the base plate and at least one reflector mounting to the base plate and substantially parallel to the axis of the cable tower. The reflector includes a plurality of electrical components operative to transmit and receive telecommunications signals in an arcuate sector of the antenna. The reflector has an inwardly facing surface opposing the cable tower and an outwardly facing surface disposed away from the cable tower. Furthermore, a cable guide plate is interposed between the cable tower and the reflector such that apertures formed in the cable guide plate may provide a guide through which a conductor may pass for making an electrical connection to one of the electrical components along the outwardly-facing surface of the reflector. The cable guide plate apertures align with the reflector apertures and provide a guide to operators when assembling, maintaining and repairing the telecommunications antenna.

IPC Classes  ?

  • H01Q 1/12 - Supports; Mounting means
  • H01Q 15/14 - Reflecting surfaces; Equivalent structures
  • H02G 3/02 - Installations of electric cables or lines or protective tubing therefor in or on buildings, equivalent structures or vehicles - Details

36.

BLOCKCHAIN-BASED METHOD AND SYSTEM FOR SECURING A NETWORK OF VIRTUAL WIRELESS BASE STATIONS

      
Application Number US2020048575
Publication Number 2021/041937
Status In Force
Filing Date 2020-08-28
Publication Date 2021-03-04
Owner JOHN MEZZALINGUA ASSOCIATES, LLC (USA)
Inventor
  • Courington, Jeffrey
  • Foresta, Francesco
  • Agrawal, Vishal

Abstract

Disclosed is a system for securing a wireless telecommunications network that is capable of distributing licensed capacity (in the form of connection licenses) to respond to localized fluctuations in demand. The system includes a master license server and a plurality of local license servers. The local license servers are coupled to a plurality of virtual wireless base stations over a bus. Each of the local license servers has a blockchain implementation that secures the virtual wireless base stations. For example, the blockchain implementation logs each transaction in which connection licenses change ownership among the virtual wireless base stations.

IPC Classes  ?

  • H04L 9/00 - Arrangements for secret or secure communications; Network security protocols
  • H04L 29/06 - Communication control; Communication processing characterised by a protocol
  • G06F 21/10 - Protecting distributed programs or content, e.g. vending or licensing of copyrighted material

37.

PASSIVE TWO-PIECE INNER CONDUCTOR FOR COMPRESSION CONNECTOR

      
Application Number US2020044052
Publication Number 2021/021921
Status In Force
Filing Date 2020-07-29
Publication Date 2021-02-04
Owner JOHN MEZZALINGUA ASSOCIATES, LLC (USA)
Inventor Benn, Jeremy

Abstract

A compression connector comprises a connector body comprising an inner surface and a threaded clamp at least partially positioned within the connector body and configured to slide relative to the connector body. A contact cone is positioned within the connector body and comprises an outer surface configured to engage with the inner surface of the connector body. An insulator is positioned proximate the contact cone and defines an aperture. An inner conductor comprises a contact component comprising an inner conductor basket and a cylindrical portion extending from the conductor basket, and an interface component defining an opening configured to engage with the cylindrical portion of the contact component. The contact component, the interface component, and the insulator are held together such that they form a rigid three-piece assembly when the threaded clamp couples an end of a cable.

IPC Classes  ?

  • H01R 4/28 - Clamped connections; Spring connections
  • H01R 13/646 - ELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS - Details of coupling devices of the kinds covered by groups  or specially adapted for high-frequency, e.g. structures providing an impedance match or phase match

38.

SYSTEM AND METHOD FOR SECURELY HOSTING MULTIPLE NETWORK OPERATORS IN A SHARED SPECTRUM ACCESS SYSTEM ON A SINGLE VIRTUAL BASE STATION ENVIRONMENT

      
Application Number US2020042926
Publication Number 2021/016271
Status In Force
Filing Date 2020-07-21
Publication Date 2021-01-28
Owner JOHN MEZZALINGUA ASSOCIATES, LLC (USA)
Inventor
  • Notargiacomo, Massimo
  • Landry, Todd
  • Masters, Jeffrey
  • Orlandini, Roberto
  • Courington, Jeffrey
  • Foresta, Francesco
  • Turner, Stephen
  • Pagani, Alessandro
  • Di Lorio, Domenico
  • Jacobs, Kurt
  • Henkle, Patrick
  • Agrawal, Vishal
  • Eswaravaka, Sasi
  • Stath, Paul

Abstract

Disclosed is a virtual base station capable of hosting multiple network operators and/or private networks in a single compute environment. The virtual base station includes a plurality of virtual baseband processors configured to communicate with the plurality of mobile network operators, a supervisor module, a fronthaul network interface configured to be coupled to one or more remote units, and a KPI (Key Performance Indicator) coordinator module coupled to the supervisor module and the one or more virtual baseband processors. The base station may have on or more CBRS (Citizens Broadband Radio Service) Daemons to act as a proxy for obtaining grants to CBRS channels and allocating the CBRS channels to the mobile network operators.

IPC Classes  ?

  • H04W 28/16 - Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
  • H04W 16/14 - Spectrum sharing arrangements
  • H04W 88/08 - Access point devices
  • H04W 88/18 - Service support devices; Network management devices
  • H04W 92/04 - Interfaces between hierarchically different network devices

39.

TOROIDAL GRADIENT INDEX LENS FOR OMNI AND SECTOR ANTENNAS

      
Application Number US2019053114
Publication Number 2020/256760
Status In Force
Filing Date 2019-09-26
Publication Date 2020-12-24
Owner JOHN MEZZALINGUA ASSOCIATES, LLC (USA)
Inventor
  • Wayton, Evan
  • Bamford, Lance

Abstract

Disclosed is an antenna having a toroidal gradient index lens, whereby a radiator may be disposed within the inner hole of the toroid. The antenna may include a mechanism that translates the radiator along the z-axis whereby an "upward" translation of the radiator along the z-axis tilts the antenna's elevation beam pattern downward. The radiator disposed within the hole of the toroid lens may be a dipole or a multi-sector radiator, such as a tri-sector radiator. Disclosed are two variations of the toroidal lens: a toroid shape, and a cylindrical toroidal shape.

IPC Classes  ?

  • H01Q 15/02 - Refracting or diffracting devices, e.g. lens, prism
  • H01Q 9/28 - Conical, cylindrical, cage, strip, gauze or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines
  • H01Q 1/36 - Structural form of radiating elements, e.g. cone, spiral, umbrella
  • G02B 3/00 - Simple or compound lenses

40.

SPHERICAL LUNEBURG LENS-ENHANCED COMPACT MULTI-BEAM ANTENNA

      
Application Number US2019052930
Publication Number 2020/190331
Status In Force
Filing Date 2019-09-25
Publication Date 2020-09-24
Owner JOHN MEZZALINGUA ASSOCIATES, LLC (USA)
Inventor Bamford, Lance

Abstract

Disclosed is an antenna having a plurality of radiators disposed in a ring or arc around a Luneburg lens. Each of the radiators (e.g., flared-notch radiators) has a center radiating axis that intersects with the center of the Luneburg lens. Each of the radiators radiate into the Luneburg lens such that the Luneburg lens substantially planarizes the beam emitted by each radiator (on transmit) and focuses an incoming wavefront into the radiator (on receiver). This not only enables having numerous well-controlled individual beams, it also allows for combining radiators to create well-defined sector beams with minimal sidelobes and fast rolloff.

IPC Classes  ?

  • H01Q 19/06 - Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens
  • H01Q 1/36 - Structural form of radiating elements, e.g. cone, spiral, umbrella

41.

RADIO FREQUENCY (RF) CONNECTOR HAVING INTEGRATED WEATHER PROTECTION SYSTEM (WPS)

      
Application Number US2020021126
Publication Number 2020/181054
Status In Force
Filing Date 2020-03-05
Publication Date 2020-09-10
Owner JOHN MEZZALINGUA ASSOCIATES, LLC (USA)
Inventor
  • Urtz Jr., Thomas, Sawyer
  • Stevens, Brandon, M.
  • Benn, Jeremy, Charles
  • Natoli, Christopher, P.
  • Dennis, Jeffrey, P.

Abstract

An RF connector having an integral weather protection system for protecting the connector from water, ice, salt, debris and other foreign damage. The connector comprises a Weather Protection (WP) assembly circumscribing a connector body, which, in turn, sealably mounts to a coaxial cable. The WP assembly comprises a housing, a compliant sealing ring and a biasing element. The WP housing sealably mounts over an end of the connector body and defines an aperture at an opposite end thereof to receive the coaxial cable and facilitate axial translation of the housing relative to the connector body. The compliant sealing ring has an inwardly facing sealing surface which defines a diameter dimension. And, the biasing element is reconfigurable from an expanded to a collapsed state in response to axial displacement of the housing relative to the connector body. Operationally, the biasing element engages the compliant ring to expand the diameter dimension of the biasing element around a portion an interface port, and closes over a sealing surface of the interface port to seal the compliant ring against the sealing surface.

IPC Classes  ?

  • H01R 13/52 - Dustproof, splashproof, drip-proof, waterproof, or flameproof cases
  • H01R 24/40 - Two-part coupling devices, or either of their cooperating parts, characterised by their overall structure having concentrically or coaxially arranged contacts specially adapted for high frequency
  • H01R 9/05 - Connectors arranged to contact a plurality of the conductors of a multiconductor cable for coaxial cables

42.

TORQUE LIMITING CLAMP FOR HELICAL OUTER CONDUCTOR CABLES

      
Application Number US2019063336
Publication Number 2020/112833
Status In Force
Filing Date 2019-11-26
Publication Date 2020-06-04
Owner JOHN MEZZALINGUA ASSOCIATES, LLC (USA)
Inventor
  • Urtz Jr., Thomas, Sawyer
  • Benn, Jeremy, Charles
  • Nugent, Adam

Abstract

Disclosed is a RF connector that has a main body, a clamp, and a cap. The connector has an internal torque limiting mechanism that enables the connector to be installed in the field such that the connector is correctly positioned at the axial stop point of the RF cable during insertion. This is enabled by an internal preloaded cap/seal interface that requires a predetermined breakaway torque to cause the cap to rotate relative to the clamp. The breakaway torque is less than a torque that would be required to over-install the connector.

IPC Classes  ?

  • H01R 13/646 - ELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS - Details of coupling devices of the kinds covered by groups  or specially adapted for high-frequency, e.g. structures providing an impedance match or phase match
  • H01R 13/52 - Dustproof, splashproof, drip-proof, waterproof, or flameproof cases
  • H01R 13/621 - Bolt, set screw or screw clamp

43.

ORCHESTRATOR AND INTERCONNECTION FABRIC MAPPER FOR A VIRTUAL WIRELESS BASE STATION

      
Application Number US2019058782
Publication Number 2020/092513
Status In Force
Filing Date 2019-10-30
Publication Date 2020-05-07
Owner JOHN MEZZALINGUA ASSOCIATES, LLC (USA)
Inventor
  • Notargiacomo, Massimo
  • Courington, Jeffrey
  • Turner, Stephen
  • Masters, Jeffrey
  • Agrawal, Vishal
  • Foresta, Francesco

Abstract

Disclosed is a virtual wireless base station that can dynamically scale its capacity to meet changes in demand for connectivity. The virtual wireless base station includes a plurality of virtual baseband modules, a plurality of interface/router modules, an orchestrator module and a fabric mapper module. Each of the plurality of virtual baseband modules is coupled to the interface/router modules by a low latency switch fabric. The orchestrator determines current and near future demand for connectivity within the virtual wireless base station and either instantiates and connects new virtual baseband processors to meet a rise in demand, or shuts down underutilized virtual baseband processors in case of insufficient demand.

IPC Classes  ?

  • H04L 12/933 - Switch core, e.g. crossbar, shared memory or shared medium
  • H04L 12/947 - Address processing within a device, e.g. using internal ID or tags for routing within a switch
  • H04L 12/931 - Switch fabric architecture
  • H04W 88/08 - Access point devices

44.

SYSTEM AND METHOD FOR CREATING AND MANAGING PRIVATE SUBNETWORKS OF LTE BASE STATIONS

      
Application Number US2019047659
Publication Number 2020/041566
Status In Force
Filing Date 2019-08-22
Publication Date 2020-02-27
Owner JOHN MEZZALINGUA ASSOCIATES, LLC (USA)
Inventor
  • Courington, Jeffrey, Michael
  • Agrawal, Vishal
  • Eswaravaka, Sasi
  • Notargiacomo, Massimo
  • Turner, Stephen
  • Henkle, Patrick, William

Abstract

Disclosed is a system and methods for creating and maintaining a virtual subnetwork of telecommunication base stations within a wider telecommunication network. In an LTE- based example, the subnetwork includes a connection aggregator that is coupled between the plurality of eNodeBs internal to the subnetwork and one or more MMEs in the outer network. The connection aggregator intercepts all control plane messages between the MMEs and the internal eNodeBs, remaps eNodeB identifiers, and transmits repackaged messages so that the outer network sees the entire subnetwork as a single "giant" eNodeB. The disclosed system and methods enables the operator of the virtual subnetwork to add and shut down eNodeBs as demand for connectivity fluctuates, and to do so such that all changes are unseen by the outer network.

IPC Classes  ?

  • H04W 88/18 - Service support devices; Network management devices
  • H04W 76/11 - Allocation or use of connection identifiers
  • H04W 4/50 - Service provisioning or reconfiguring
  • H04W 4/90 - Services for handling of emergency or hazardous situations, e.g. earthquake and tsunami warning systems [ETWS]

45.

ENHANCED ELECTRICAL GROUNDING OF HYBRID FEED-THROUGH CONNECTORS

      
Application Number US2019039446
Publication Number 2020/006195
Status In Force
Filing Date 2019-06-27
Publication Date 2020-01-02
Owner JOHN MEZZALINGUA ASSOCIATES, LLC (USA)
Inventor
  • Urtz, Jr., Thomas Sawyer
  • Mahlum, Colter P.
  • Stevens, Brandon M.

Abstract

An RF Connector and grounding device therefor comprises a driver, a contact ring and a spring clamp having a split ring washer disposed therebetween. The split ring washer interposes the driver on one side of the washer and the contact ring on the other side thereof and defines an aperture for receiving a prepared end of a coaxial cable. The washer is connected to one side of an annular ring while a shouldered flange is disposed on the opposing side of the ring. Upon delivering a compressive clamping force to a compression cap, the split ring washer is captured between adjacent peaks or corrugations of the outer conductor.

IPC Classes  ?

  • H01R 13/6591 - Specific features or arrangements of connection of shield to conductive members
  • H01R 24/38 - Two-part coupling devices, or either of their cooperating parts, characterised by their overall structure having concentrically or coaxially arranged contacts
  • H01R 103/00 - Two poles

46.

PATCH ANTENNA DESIGN FOR EASY FABRICATION AND CONTROLLABLE PERFORMANCE AT HIGH FREQUENCY BANDS

      
Application Number US2019032194
Publication Number 2019/222197
Status In Force
Filing Date 2019-05-14
Publication Date 2019-11-21
Owner JOHN MEZZALINGUA ASSOCIATES, LLC (USA)
Inventor
  • Jang, Taehee
  • Tambe, Niharika
  • Ragos, Jordan
  • Sundararjan, Niranjan

Abstract

Disclosed is a high frequency radiator for an antenna. The high frequency radiator is formed of two interlocking PCB stems on which a radiator plate is mounted. Disposed on each of the interlocking PCB stems are two combinations of a feeder metallic trace and an opposing metallic trace, disposed on opposite sides of the PCB stem and electrically coupled together by at least one via formed in the PCB stem and a solder point within the via. This configuration of high frequency radiator is considerably cheaper to manufacture compared to conventional designs and is less susceptible to impedance matching problems resulting from inconsistent solder joint dimensions.

IPC Classes  ?

  • H01Q 9/04 - Resonant antennas
  • H01Q 1/38 - Structural form of radiating elements, e.g. cone, spiral, umbrella formed by a conductive layer on an insulating support

47.

COMPACT ANTENNA PHASE SHIFTER WITH SIMPLIFIED DRIVE MECHANISM

      
Application Number US2019028702
Publication Number 2019/209815
Status In Force
Filing Date 2019-04-23
Publication Date 2019-10-31
Owner JOHN MEZZALINGUA ASSOCIATES, LLC (USA)
Inventor Litteer, Andrew

Abstract

Disclosed is a phase shifter arrangement for an antenna, such as a cellular antenna, that has a simplified drive mechanism. The phase shifter arrangement has two phase shifters, each with two wiper arms that are coupled at one end to a single drive shaft. Each of the wiper arms have a pivot access that may be located at or near its center such that as the drive shaft translates, it mechanically engages both wiper arms, causing them to rotate around their respective pivot axes. Certain antenna arrangements have several array faces. For example, the antenna may have three array faces, each spaced at 120 degrees of azimuth. The drive shafts for each of these array faces may operate independently to function as a multisector antenna, or they may be driven in unison to function as an omnidirectional antenna.

IPC Classes  ?

  • H01Q 3/36 - Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the distribution of energy across a radiating aperture varying the phase by electrical means with variable phase-shifters

48.

ANNULAR ABUTMENT/ALIGNMENT GUIDE FOR CABLE CONNECTORS

      
Application Number US2019027913
Publication Number 2019/204476
Status In Force
Filing Date 2019-04-17
Publication Date 2019-10-24
Owner JOHN MEZZALINGUA ASSOCIATES, LLC (USA)
Inventor
  • Urtz Jr., Thomas Sawyer
  • Benn, Jeremy Charles
  • Olivares, Nic

Abstract

A connector comprises an inner conductor, an outer conductor basket and an annular abutment/alignment guide disposed therebetween. The inner conductor socket transmits RF signals from one connector portion to another connector portion across a mating interface. The outer conductor basket comprises a plurality of axially projecting fingers operative to electrically ground the connector. The annular abutment comprises an outwardly facing abutment surface and an alignment guide disposed integrally with the annular abutment. The alignment guide has a flanged end portion projecting: (i) radially outboard from an upper or forward end of the annular abutment and (ii) over the tip ends of each axially projecting basket finger. The annular abutment: (a) inhibits inward radial displacement of the axially projecting fingers, (b) prevents plastic deformation of the basket fingers upon annular abutment of a non-mating connector, and (c) aligns a mating connector so as to prevent damage to the basket fingers upon joining the mating connector.

IPC Classes  ?

  • H01R 13/629 - Additional means for facilitating engagement or disengagement of coupling parts, e.g. aligning or guiding means, levers, gas pressure
  • H01R 13/646 - ELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS - Details of coupling devices of the kinds covered by groups  or specially adapted for high-frequency, e.g. structures providing an impedance match or phase match

49.

CONNECTOR AND CONNECTOR INSERT FOR PROTECTING CONDUCTOR SPRING-ELMENTS

      
Application Number US2019022237
Publication Number 2019/178340
Status In Force
Filing Date 2019-03-14
Publication Date 2019-09-19
Owner JOHN MEZZALINGUA ASSOCIATES, LLC (USA)
Inventor
  • Stevens, Brandon
  • Meshram, Nikhil, Balakdas

Abstract

A connector, and connector insert, configured to inhibit plastic deformation of at least one of the axially projecting fingers of an outer conductor basket associated with a connector. The connector insert comprises: (i) an outwardly facing flange configured to engage a shoulder formed at a base of the axially projecting fingers of the outer conductor basket, (ii) a tubular structure defining an elongate axis and having plurality of engagement sections extending normal to the outwardly facing flange, each engagement section having a surface disposed substantially normally to a radial projecting from the elongate axis; and (iii) a plurality of stiffening sections having a surface disposed substantially parallel to a radial projecting from the elongate axis. The engagement sections function to prevent plastic deformation of the axially projecting fingers, thereby preventing damage to the fingers and/or the transmission of RF signals The stiffening sections function to support the engagement sections while furthermore preventing the insertion of a non-mating second connector into, or against, the outer conductor basket of a first connector.

IPC Classes  ?

  • H01R 13/646 - ELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS - Details of coupling devices of the kinds covered by groups  or specially adapted for high-frequency, e.g. structures providing an impedance match or phase match
  • H01R 13/44 - Means for preventing access to live contacts

50.

FAST ROLLOFF ANTENNA ARRAY FACE WITH HETEROGENEOUS ANTENNA ARRANGEMENT

      
Application Number US2019014899
Publication Number 2019/147769
Status In Force
Filing Date 2019-01-24
Publication Date 2019-08-01
Owner JOHN MEZZALINGUA ASSOCIATES, LLC (USA)
Inventor
  • Jang, Taehee
  • Sundararajan, Niranjan
  • Ragos, Jordan

Abstract

Disclosed is a multiband antenna that has a plurality of first unit cells and second unit cells. Each first unit cell has two high band radiator clusters and two low band radiators disposed approximately in the center of each of the high band radiator clusters. Each second unit cell has two high band radiator clusters and one low band radiator that is disposed between the two high band radiator clusters. The first unit cell is designed for a superior low band gain pattern, and the second unit cell is designed for a superior high band gain pattern. By selectively arranging the first and second unit cells in a specific heterogeneous pattern, the characteristics of the two unit cells may advantageously and constructively combine to form a high performance antenna gain pattern that is consistent across the low band and high band.

51.

INTEGRATED FILTER RADIATOR FOR A MULTIBAND ANTENNA

      
Application Number US2018054321
Publication Number 2019/070947
Status In Force
Filing Date 2018-10-04
Publication Date 2019-04-11
Owner JOHN MEZZALINGUA ASSOCIATES, LLC (USA)
Inventor Le, Kevin

Abstract

Disclosed is a low band dipole that has four dipole arms in a cross configuration, and a simplified cloaking structure to substantially prevent interference with radiated RF energy from nearby high band dipoles. Further disclosed is a feed network and dipole stem balun configuration that power divides and combines two distinct RF signals, without the use of a hybrid coupler, so that the four dipole arms collectively radiate the two RF signals respectively at a +45 degree and -45 degree polarization orientation relative to the orientation of the dipole arms.

IPC Classes  ?

  • H01Q 9/28 - Conical, cylindrical, cage, strip, gauze or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines
  • H01Q 1/38 - Structural form of radiating elements, e.g. cone, spiral, umbrella formed by a conductive layer on an insulating support

52.

EDGE-BASED LOCATION-SPECIFIC WARNING SYSTEM FOR LTE NETWORKS

      
Application Number US2018050495
Publication Number 2019/055425
Status In Force
Filing Date 2018-09-11
Publication Date 2019-03-21
Owner JOHN MEZZALINGUA ASSOCIATES, LLC (USA)
Inventor
  • Henkle, Patrick
  • Agrawal, Vishal
  • Courington, Jeffrey
  • Landry, Todd
  • Eswaravaka, Sasi
  • Blasko, John
  • Turner, Stephen

Abstract

Disclosed is a mobile edge computing system that provides localized emergency responses and warning exclusively to UEs within a venue or area, and provides location- specific warning within the venue or area. The system includes a component that aggregates the Sl-mme interface between the MME and a plurality of baseband units and provides read and write access to the Sl-mme interface. The disclosed mobile edge computing system can issue cell-specific public warning system (PWS) messages that are customized for and transmitted exclusively to each individual cell within the venue.

IPC Classes  ?

  • H04W 4/90 - Services for handling of emergency or hazardous situations, e.g. earthquake and tsunami warning systems [ETWS]
  • H04W 4/02 - Services making use of location information
  • H04W 92/24 - Interfaces between hierarchically similar devices between backbone network devices

53.

WEATHER PROTECTING (WP) HOUSING FOR COAXIAL CABLE CONNECTORS

      
Application Number US2018048308
Publication Number 2019/046277
Status In Force
Filing Date 2018-08-28
Publication Date 2019-03-07
Owner JOHN MEZZALINGUA ASSOCIATES, LLC (USA)
Inventor
  • Meshram, Nikhil, B.
  • Nugent, Adam, T.
  • Natoli, Christopher, P.
  • Stevens, Brandon, M.

Abstract

A productive housing for a coaxial cable connector comprising an elastomeric housing disposed over and engaging a connector and having a plurality of longitudinal slots formed into the inner mold line (IML) surface of the elastomeric housing. The longitudinal slots function to reduce the surface area of frictional engagement between the intermediate surface and the corresponding peripheral surface of the coaxial cable connector. The longitudinal slots serve as a longitudinal passageway for the movement of trapped air from one IML surface to another so as to prevent the built-up of air and/or inducing a pocket of suction resisting the separation of the housing from the jumper cable.

IPC Classes  ?

  • H01R 13/52 - Dustproof, splashproof, drip-proof, waterproof, or flameproof cases
  • H01R 24/38 - Two-part coupling devices, or either of their cooperating parts, characterised by their overall structure having concentrically or coaxially arranged contacts

54.

CONTROLLER FOR PRECISELY POWERING REMOTE RADIO HEADS ON A CELL TOWER

      
Application Number US2018037335
Publication Number 2018/231984
Status In Force
Filing Date 2018-06-13
Publication Date 2018-12-20
Owner JOHN MEZZALINGUA ASSOCIATES, LLC (USA)
Inventor Gandhi, Ronak, Bhadresh

Abstract

Disclosed is a system and method for providing stable and reliable power to components on the top of a cell tower. The system performs a device discovery process to determine with Power Supply Units are connected to which Remote Radio Heads on the tower. It also provides several ways of characterizing the power cables and input capacitance to the Remote Radio Heads to provide optimal power to the Remote Radio Heads, including situations in which the power demand for the Remote Radio Heads increases, while obviating the need to replace the power cables with those of greater current capacity. Further, the system provides for stable power even in the presence of sensor instabilities and data dropouts.

IPC Classes  ?

  • H04B 3/44 - Arrangements for feeding power to a repeater along the transmission line
  • G01R 19/25 - Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques

55.

WEATHER PROTECTING (WP) BOOT FOR COAXIAL CABLE CONNECTORS

      
Application Number US2018037779
Publication Number 2018/232255
Status In Force
Filing Date 2018-06-15
Publication Date 2018-12-20
Owner JOHN MEZZALINGUA ASSOCIATES, LLC (USA)
Inventor
  • Stevens, Brandon, M., Jr.
  • Anderson, Cody
  • Natoli, Christopher, P.

Abstract

A weather protection system for a coaxial cable connector comprising: (i) an over-mold cap disposed over a prepared end of a coaxial cable, (ii) a compliant Weather Protecting (WP) boot circumscribing the over-mold cap, and a mating interface disposed between an outer surface of the over-mold cap and an inner surface of the compliant WP boot. The mating interface is configured to provide tactile feedback to an assembler/technician when assembling the WP boot in combination with the over-mold cap.

IPC Classes  ?

  • H01R 24/38 - Two-part coupling devices, or either of their cooperating parts, characterised by their overall structure having concentrically or coaxially arranged contacts
  • H01R 13/533 - Bases or cases made for use in extreme conditions, e.g. high temperature, radiation, vibration, corrosive environment, pressure
  • H01R 13/646 - ELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS - Details of coupling devices of the kinds covered by groups  or specially adapted for high-frequency, e.g. structures providing an impedance match or phase match

56.

MULTI-BAND FAST ROLL OFF ANTENNA HAVING MULTI-LAYER PCB-FORMED CLOAKED DIPOLES

      
Application Number US2018033250
Publication Number 2018/213620
Status In Force
Filing Date 2018-05-17
Publication Date 2018-11-22
Owner JOHN MEZZALINGUA ASSOCIATES, LLC (USA)
Inventor
  • Waldauer, Alex
  • Buondelmonte, Charles
  • Jang, Taehee
  • Sundararajan, Niranjan
  • Wayton, Evan Christopher
  • Bamford, Lance

Abstract

Disclosed is a telecommunications antenna having a plurality of cloaked low band (LB) and high band (HB) dipoles. The LB and HB dipoles provide cloaking by breaking the dipoles into dipole segments, and providing conductive cloaking elements over the gaps between dipole segments to form a plurality of capacitors along the dipole. The capacitors along the LB dipoles provide a low impedance to LB RF signals and a high impedance to HB signals. The capacitors formed on the HB dipoles provide a low impedance to RF signals and high impedance to harmonics of the LB RF signals. This cross-cloaking of dipoles enables more dense arrangements of LB and HB dipoles on an antenna array face, providing opportunities to arrange, for example, the LB dipoles with an array factor that results in an advantageous fast roll off gain pattern.

IPC Classes  ?

  • H01Q 21/06 - Arrays of individually energised antenna units similarly polarised and spaced apart
  • H01Q 9/28 - Conical, cylindrical, cage, strip, gauze or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines

57.

LOW-PROFILE VERTICALLY-POLARIZED OMNI ANTENNA

      
Application Number US2018027921
Publication Number 2018/195047
Status In Force
Filing Date 2018-04-17
Publication Date 2018-10-25
Owner JOHN MEZZALINGUA ASSOCIATES, LLC (USA)
Inventor
  • Sundararajan, Niranjan
  • Enders, Michael

Abstract

An omni-directional antenna including a plurality of stacked omni-directional antenna core assemblies. Each antenna core assembly comprises a conductive ground plane defining an axis normal to the ground plane and a plurality of conductive plates projecting orthogonally from the conductive ground plane and angularly spaced about the axis. Each of the plates defines an edge extending radially outboard from the central axis and diverging away from the conductive ground plane as the radial distance increases from the central axis. The edge defines a first region defining an acute angle relative to the conductive ground plane and a second region, radially outboard of the first region defining an arcuate shape.

IPC Classes  ?

  • H01Q 1/12 - Supports; Mounting means
  • H01Q 21/00 - Antenna arrays or systems
  • H01Q 21/06 - Arrays of individually energised antenna units similarly polarised and spaced apart
  • H01Q 21/29 - Combinations of different interacting antenna units for giving a desired directional characteristic

58.

QUICK CONNECT/DISCONNECT COAXIAL CABLE CONNECTOR

      
Application Number US2018020723
Publication Number 2018/164964
Status In Force
Filing Date 2018-03-02
Publication Date 2018-09-13
Owner JOHN MEZZALINGUA ASSOCIATES, LLC (USA)
Inventor Meshram, Nikhil B.

Abstract

A quick connect and release mechanism is provided for a coaxial cable connector comprising a first connector body having an annular cavity accessible by a tubular opening. A conical retention ring is disposed in the annular cavity and engaging at least one radial step form along a rearwardly facing surface of the annular cavity and, furthermore, being configured to engage a retention surface of a second connector body upon insertion of a tubular sleeve thereof. Furthermore, a retention ring engager is disposed over a portion of the first connector body and has a sleeve portion extending into the tubular opening to urge the retention ring from engagement with the at least one radial step while also disengaging the retention surface of the second connector. As a consequence, the second connector is released from the first connector.

IPC Classes  ?

  • H01R 4/28 - Clamped connections; Spring connections
  • H01R 4/48 - Clamped connections; Spring connections using a spring, clip or other resilient member
  • H01R 4/50 - Clamped connections; Spring connections using a cam, wedge, cone or ball
  • H01R 4/52 - Clamped connections; Spring connections using a cam, wedge, cone or ball which is spring loaded
  • H01R 13/62 - Means for facilitating engagement or disengagement of coupling parts or for holding them in engagement
  • H01R 13/627 - Snap-action fastening
  • H01R 13/26 - Pin or blade contacts for sliding co-operation on one side only
  • H01R 13/633 - Additional means for facilitating engagement or disengagement of coupling parts, e.g. aligning or guiding means, levers, gas pressure for disengagement only
  • H01R 24/20 - Coupling parts carrying sockets, clips or analogous contacts and secured only to wire or cable
  • H01R 24/50 - Two-part coupling devices, or either of their cooperating parts, characterised by their overall structure having concentrically or coaxially arranged contacts specially adapted for high frequency mounted on a PCB [Printed Circuit Board]
  • H01R 24/76 - Two-part coupling devices, or either of their cooperating parts, characterised by their overall structure with sockets, clips or analogous contacts and secured to apparatus or structure, e.g. to a wall

59.

CLOAKING ARRANGEMENT FOR LOW PROFILE TELECOMMUNICATIONS ANTENNA

      
Application Number US2018020618
Publication Number 2018/164947
Status In Force
Filing Date 2018-03-02
Publication Date 2018-09-13
Owner JOHN MEZZALINGUA ASSOCIATES, LLC. (USA)
Inventor
  • Jang, Taehee
  • Sundararajan, Niranjan
  • Bamford, Lance D.
  • Wayton, Evan C.

Abstract

A telecommunications antenna comprising a plurality of unit cells each including at least one radiator which transmits RF energy within a bandwidth range which is a multiple of another radiator. The radiators are proximal to each other such that a resonant condition may be induced into the at least one radiator upon activation of the other radiator. At least one of the radiators is segmented into capacitively-connected radiator elements to suppress a resonance response therein upon activation of the other of the radiator.

IPC Classes  ?

  • H01Q 1/52 - Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
  • H01Q 5/30 - Arrangements for providing operation on different wavebands
  • H01Q 21/10 - Collinear arrangements of substantially straight elongated conductive units
  • H01Q 9/04 - Resonant antennas

60.

SYSTEM AND METHOD FOR ADAPTIVELY TRACKING AND ALLOCATING CAPACITY IN A BROADLY-DISPERSED WIRELESS NETWORK

      
Application Number US2018019468
Publication Number 2018/156926
Status In Force
Filing Date 2018-02-23
Publication Date 2018-08-30
Owner JOHN MEZZALINGUA ASSOCIATES, LLC (USA)
Inventor
  • Eswarakava, Sasi
  • Agrawal, Vishal
  • Blasko, John
  • Brizzi, Gilberto
  • Landry, Todd, E.
  • Henkle, Patrick, William

Abstract

Disclosed is a system for tracking and dynamically allocating wireless capacity within a wireless telecommunications network. The system has a plurality of processor levels: a layer of baseband-level capacity processors that are deployed within each baseband processor; a layer of client-level capacity processors that are deployed within each wireless base station; a layer of server-level capacity processors, each of which orchestrate allocation of wireless capacity over a unique domain of wireless base stations; and a master level capacity processor. Wireless capacity is allocated in terms of active connections to wireless devices, and the active connections are quantized and allocated as logical connections, or connection tokens. The system dynamically allocates wireless capacity so that resources are devoted to venues and environments where demand is greatest at any given time.

IPC Classes  ?

  • H04W 16/04 - Traffic adaptive resource partitioning

61.

REMOTE UNIT DOCKING STATION FOR PACKET/DIGITAL ENERGY TRANSFER TELECOMMUNICATIONS SYSTEMS

      
Application Number US2017049593
Publication Number 2018/045159
Status In Force
Filing Date 2017-08-31
Publication Date 2018-03-08
Owner JOHN MEZZALINGUA ASSOCIATES, LLC (USA)
Inventor
  • Nugent, Adam, T.
  • Natoli, Christopher, P.
  • Landry, Todd
  • Cooke, Matthew
  • Marketos, Leon
  • Chawgo, Shawn, M.

Abstract

Mounting arrangement for securing remote radio unit with telecommunications tower for mounting an antenna, including a docking station comprising: control unit having at least two openings through an upper wall of the control unit for receiving each remote radio unit, sealing gasket disposed about the periphery of each opening; pair of guide rails projecting upwardly from the upper wall of the control unit and between the at least two openings, mechanism for producing a watertight seal between the control unit and each remote unit. Control unit defines internal enclosure for housing electronic interface configured to provide digital energy and exchange data between each remote unit and a base station. Guide rails of the docking station are configured to slidably receive, and guide each remote unit into openings of the control unit. Sealing mechanism is configured to forcibly urge each remote unit against the sealing gasket to produce a watertight seal.

IPC Classes  ?

  • G02B 6/44 - Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
  • H01Q 1/12 - Supports; Mounting means
  • H02H 3/30 - Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition, with or without subsequent reconnection responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at two spaced portions of a single system, e.g. at opposite ends of one line, at input and output of apparatus using pilot wires or other signalling channel
  • H02J 1/10 - Parallel operation of dc sources
  • H02J 1/14 - Balancing the load in a network
  • H02S 40/32 - Electrical components comprising DC/AC inverter means associated with the PV module itself, e.g. AC modules
  • H04W 48/02 - Access restriction performed under specific conditions

62.

LOW PROFILE TELECOMMUNICATIONS ANTENNA

      
Application Number US2017044515
Publication Number 2018/023071
Status In Force
Filing Date 2017-07-28
Publication Date 2018-02-01
Owner JOHN MEZZALIGUA ASSOCIATES, LLC (USA)
Inventor
  • Jang, Taehee
  • Bamford, Lance, D.
  • Le, Kevin, T.
  • Wayton, Evan, C.
  • Anderson, Cody, J.
  • Ragos, Jordan
  • Sundararajan, Niranjan

Abstract

A telecommunications antenna comprising a plurality of unit cells each including at least one radiator which transmits RF energy within a bandwidth range which is a multiple of another radiator. The radiators are proximal to each other such that a resonant condition may be induced into the at least one radiator upon activation of the other radiator. At least one of the radiators is segmented into capacitively-connected radiator elements to suppress a resonance response therein upon activation of the other of the radiator.

IPC Classes  ?

  • H01Q 1/24 - Supports; Mounting means by structural association with other equipment or articles with receiving set
  • H01Q 21/26 - Turnstile or like antennas comprising arrangements of three or more elongated elements disposed radially and symmetrically in a horizontal plane about a common centre
  • H01Q 21/30 - Combinations of separate antenna units operating in different wavebands and connected to a common feeder system
  • H01Q 5/42 - Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements using two or more imbricated arrays

63.

FRAME ASSEMBLY FOR COAXIAL CABLE CONNECTORS

      
Application Number US2017041642
Publication Number 2018/022297
Status In Force
Filing Date 2017-07-12
Publication Date 2018-02-01
Owner JOHN MEZZALINGUA ASSOCIATES, LLC (USA)
Inventor
  • Stevens, Brandon M.
  • Natoli, Christopher P.

Abstract

A frame assembly for a compression tool, including a fitting configured to mount to the compression tool and receive a ram member thereof through a bore of the fitting; and a pair of interlocking jaws pivotally mounted to the fitting about a pair of non-coincident axes. The interlocking jaws are configured to at least partially envelop an annular compression ring while aligning the conductors of a coaxial cable with an axis of the cable connector. The ram member of the compression tool is activated to translate axially along the axis of the cable connector thereby mitigating misalignment of the compression ring as the ring engages the connector body.

IPC Classes  ?

64.

SYSTEMS, METHODS AND MANUFACTURES FOR PROVIDING NETWORK SERVICES INCLUDING MOBILE SERVICES TO A LOCATION

      
Application Number US2016025098
Publication Number 2016/161040
Status In Force
Filing Date 2016-03-30
Publication Date 2016-10-06
Owner JOHN MEZZALINGUA ASSOCIATES, LLC (USA)
Inventor
  • Landry, Todd, Edward
  • Notargiacomo, Massimo
  • Orlandini, Roberto
  • Chiurco, Giovanni

Abstract

Systems, methods, and computer readable media are directed to pooling resources in a mobile network, The method includes allocating baseband resources between a plurality of virtual baseband engines supporting the mobile network. The 'method Includes determining a change in a usage of the mobile network, Additionally, the method includes re-allocating, in response to the change in the usage of the mobile network, the baseband resources between the plurality of virtual baseband engines. Systems, methods, and computer readable media are also directed to providing services at a location that includes a mobile network.

IPC Classes  ?

  • H04W 16/00 - Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cell structures
  • H04W 16/02 - Resource partitioning among network components, e.g. reuse partitioning
  • H04W 84/04 - Large scale networks; Deep hierarchical networks

65.

AN INTERFERENCE REDUCTION SYSTEM FOR ONE OR MORE ANTENNAS

      
Application Number US2014057720
Publication Number 2015/048444
Status In Force
Filing Date 2014-09-26
Publication Date 2015-04-02
Owner JOHN MEZZALINGUA ASSOCIATES, LLC (USA)
Inventor Chawgo, Shawn, M.

Abstract

An interference reduction system is operable to reduce interference experienced by one or more antennas. The system detects the presence of one or more interference signals. The system then causes an antenna's radiation pattern to change. The change in the radiation pattern results in a reduction in interference.

IPC Classes  ?

  • H01Q 3/00 - Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system

66.

CONNECTOR ASSEMBLY HAVING DEFORMABLE CLAMPING SURFACE

      
Application Number US2013066893
Publication Number 2014/066807
Status In Force
Filing Date 2013-10-25
Publication Date 2014-05-01
Owner JOHN MEZZALINGUA ASSOCIATES, LCC (USA)
Inventor
  • Nugent, Adam T.
  • Baker, Ian J.
  • Natoli, Christopher P.
  • Montena, Noah

Abstract

A coaxial cable connector comprising a connector body having a first end and a second end, wherein the connector body is configured to receive a coaxial cable through the second end, a first cooperating surface disposed within the connector body, wherein the first cooperating surface is a surface of a clamp, the clamp is configured to threadably engage an outer conductor of the coaxial cable, and a second cooperating surface, wherein the second cooperating surface cooperates with the first cooperating surface to collapse an outer conductor of the coaxial cable, wherein at least a portion of the second cooperating surface malleably deforms to a variable axial thickness of a non-uniform collapsed portion of the outer conductor is provided. An associated method is also provided.

IPC Classes  ?

  • H01R 9/05 - Connectors arranged to contact a plurality of the conductors of a multiconductor cable for coaxial cables

67.

COAXIAL CABLE DEVICE AND METHOD INVOLVING WELD CONNECTIVITY

      
Application Number US2013064682
Publication Number 2014/059365
Status In Force
Filing Date 2013-10-11
Publication Date 2014-04-17
Owner JOHN MEZZALINGUA ASSOCIATES, LLC (USA)
Inventor
  • Werner, Wild
  • Refle, Gerhard
  • Montena, Noah

Abstract

A coaxial cable device and method involve weld connectivity. The device, in one embodiment, includes a coaxial cable comprising an inner conductor, an outer conductor, an outer conductor engager and an inner conductor engager. At least one of such conductor engagers includes a weld interface for weld connection with part of a coaxial cable. The outer conductor engager is configured to receive at least part of the outer conductor, the outer conductor engager being welded to the received part of the outer conductor. Additionally, the inner conductor engager is configured to receive at least part of the inner conductor. The outer conductor has a corrugated shape.

IPC Classes  ?

  • H01B 13/20 - Applying discontinuous insulation, e.g. discs, beads for concentric or coaxial cables

68.

RETAINER AND SEAL FOR COAXIAL CABLE CONNECTOR

      
Application Number US2013054521
Publication Number 2014/028379
Status In Force
Filing Date 2013-08-12
Publication Date 2014-02-20
Owner JOHN MEZZALINGUA ASSOCIATES, LLC (USA)
Inventor Nugent, Adam, T.

Abstract

A coaxial cable connector including a connector body, a compression member axially movable with respect to the connector body, a clamp having a cable end, a terminal end, and an inner bore, the inner bore having a contact surface configured to contact an outer conductor of a coaxial cable, the cable end having a slot extending toward the terminal end, and a cable seal having a band, a link, and an engagement member, the band located adjacent the contact surface, the link configured to fit into the slot, and the engagement member attached to the link opposite the band, the engagement member located adjacent the clamp, wherein the engagement member provides radially inward pressure, and wherein, upon assembly to the coaxial cable, the band forms an environmental seal between the contact surface and the outer conductor of the coaxial cable is provided. An associated method is further provided.

IPC Classes  ?

  • H01R 9/05 - Connectors arranged to contact a plurality of the conductors of a multiconductor cable for coaxial cables

69.

SEAL FOR HELICAL CORRUGATED OUTER CONDUCTOR

      
Application Number US2013054749
Publication Number 2014/028503
Status In Force
Filing Date 2013-08-13
Publication Date 2014-02-20
Owner JOHN MEZZALINGUA ASSOCIATES, LLC (USA)
Inventor
  • Natoli, Christopher, P.
  • Baker, Ian, J.

Abstract

A seal member disposed within a coaxial cable connector comprising an annular body portion having an outer diameter surface and an inner diameter surface, and a plurality of flexible segments disposed along the inner diameter surface, extending radially inward from the inner diameter surface, wherein the flexible segments are configured to conform to a helical outer conductor and fill a valley of the helical outer conductor, thereby effectuating an environmental seal around the helical outer conductor is provided. A coaxial cable including the seal member is also provided. An associated method is further provided.

IPC Classes  ?

  • H01R 13/52 - Dustproof, splashproof, drip-proof, waterproof, or flameproof cases

70.

MID-SPAN GROUNDING CLAMP AND METHOD OF USE

      
Application Number US2013051670
Publication Number 2014/018525
Status In Force
Filing Date 2013-07-23
Publication Date 2014-01-30
Owner JOHN MEZZALINGUA ASSOCIATES, LLC (USA)
Inventor
  • Wild, Werner, K.
  • Strasser, Bernhard
  • Natoli, Christopher, P.

Abstract

A grounding clamp is provided that includes a housing configured to receive both ends of an extending wire in an inner chamber through a first opening, the housing including a second opening configured to receive a lug, wherein the lug is to secures both ends of the grounding wire within the inner chamber. A method of installing a grounding clamp includes attaching a fishline to a grounding wire and inserting the fishline through an opening of a corrugated coaxial cable in a valley located between an outer conductor and an outer jacket of the coaxial cable, wherein the fishline is flexible enough that it bends around the corrugated coaxial cable. A drill bit for creating an opening in a coaxial cable is also contemplated, along with a tool for fishing the grounding wire through the coaxial cable.

IPC Classes  ?

  • H01R 4/66 - Connections with the terrestrial mass, e.g. earth plate, earth pin